
A MARSHALL CAVENDISH 47 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol* 4 	 No 47

BASIC PROGRAMMING 90

ADDING SOME DEPTH 	 1461

How to master the tricks of perspective drawing

APPLICATIONS 33

IN 	CH OF THE BEST TIMES Min 	 - • 1466

How to put your PERT program to work

APPLICATIONS 34

A PICTURE TEST CARD PROGRAM 	1474
IlltaS1110.19L. 	 -■1•1=MIIIIESWITEM

To check that your monitor or TV is giving its best

MACHINE CODE 50

CLIFFHANGER: SETTLING THE SCORE 	1476

Count up your points and print them out

LANGUAGES 8

AND SO * * * FORTH 	 1482

The ins and outs of a powerful new language

GAMES PROGRAMMING 51

ESCAPE: THE ADVENTURE GOES ON 	1486

Adding the next section of your adventure game

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Graeme Harris. Pages 1461, 1464, Spectrum Colour Library/Berry
Fallon Design. Pages 1462, 1463, Peter Reilly. Pages 1466, 1470, George Logan.
Page 1475, Peter Reilly. Pages 1476, 1478, 1480, Gary Wing. Pages 1482, 1484,
Graen. Harris. Pages 1487, 1488, 1491, 1492, Stuart Robertson.

© Marshall Cavendish Limited 1985/6/7
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch

(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local

newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W IV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, Irk 1
48K,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ VII DRAGON 32 and 64

TANDY TRS80
am. 7181 	VIC 20

'T
 TANDY COMPUTER

PERSPECTIVE
VANISHING POINT

VIEWPOINT
DIMINISHING SIZE

SHADING

Add a feeling of depth and three-
dimensionality to your graphics by
incorporating the principles of
perspective and adding a touch of
shading

Most people think of perspective in drawing
as common sense and tend to draw sketches
with perspective built in. Surprisingly, per-
spective is not at all common sense, and the
early artists had no idea of how to add depth

to their pictures. In fact, it was only during
the Renaissance, when painters attempted to
represent the world in a realistic way that the
rules of perspective were explored and for-
mulated* These rules are the same as artists
use today, and apply equally to pictures
drawn by a computer.

The development of perspective took
several centuries but the rules are not at all
difficult to understand. Basically, all horiz-
ontal lines going from side to side of the
picture stay horizontal, all vertical lines stay

vertical, and all lines going 'into' the picture
from front to back converge to a point in the
middle of the picture, called the vanishing
point. You've already met this idea in the
article on wireframe drawings, which used the
principle of perspective to draw the cube—see
page 605.

Only parallel lines that are supposed to be
perpendicular to the picture converge at the
central principal vanishing point. Other sets
of parallel lines converge on their own vanish-
ing point to one side of the principal one. All

vanishing points lie on the same line, though,
called the horizon. It is called this because if
you could look through the picture to open
space this would correspond to the real
horizon. However, do bear in mind that this is
an imaginary line and needn't correspond to
any real line in your picture.

These rules are obviously needed for real-
istic pictures, but on a simpler level they mean
you can quickly create a feeling of depth
simply by incorporating something like a road
or river or track that vanishes into the
distance. You can create an even stronger
effect by using a grid of lines, a trick often
used in futuristic or space scenes or in TV
advertisements that use computer graphics.

PERSPECTIVE GRID
The first program draws two grids, one
forming the 'ground' and the other the 'sky',
with you, the viewer, seemingly suspended
somewhere in between looking into infinity.

10 BORDER 0: PAPER 0: INK 7
20 CLS : INPUT "VANISHING FACTOR 0";V
40 FOR K= —126 TO 127 STEP 6
50 LET Y=174: LET X= K + V*K: IF ABS

(X)>127+(X<1) THEN LET X= SGN
(X)127— (X <1): LET
Y=100+ (X— K)*74/(V*K)

60 PLOT 127—K,100: DRAW 127 —X— PEEK
23677,Y — PEEK 23678

70 PLOT 127 — K,74: DRAW 127 —X— PEEK
23677,174—Y— PEEK 23678

80 NEXT K
90 LET F=VI(1/6): LET Y= F
100 LET Y= `CF: IF Y> 77 THEN GOTO 140
110 PLOT 0,97+Y: DRAW 255,0
120 PLOT 0,77—Y: DRAW 255,0
130 GOTO 100
140 IF INKEY$="" THEN GOTO 140
150 GOTO 20

20 INPUT"DVANISHING FACTORPJ";1/
30 HIRES 0,1
40 FOR K= —159 TO 159 STEP 6
50 Y= 199:X = K + V*K:IF ABS(X) > 160

— (X <1)THENX = SGN(X)*1 60 + (X <1):
Y =111 + (X— K) * 80/(V * K)

60 LINE 160 — K,111,160 —X,Y,1
70 LINE 160— K,90,160 — X,199 —Y,1
80 NEXT K
90 F= Vi(1/6):Y = F
100 Y=Y*F:IF Y>93 THEN 140
110 LINE 0,108 +Y,319,108+Y,1
120 LINE 0,94 —Y,319,94 —Y,1
130 GOTO 100
140 GET A$:IF A$=‘"' THEN 140
150 NRM:GOTO 20

10 MODE0
20 INPUT"VANISHING FACTOR",V
30 CLS
40 FOR K= —640 TO 640 STEP32
50 Y= 1023:X = K + V*K:IF ABS(X) > 640 —

(X<1)THEN X=SGN(X) * 640 + (X<1)
Y= 624+ (X — K)*400/(V*K)

60 MOVE640 — K,624: D RAW640 —
X,Y

70 MOVE640 — K,400:DRAW
640 — X,1023 — Y

80 NEXT
90 F =V A (1/6):Y= F
100 Y = Y*F:IFY> 400

THEN 140
110 MOVE0,620 + Y:

DRAW1280,620+ Y
120 MOVE0,404—Y:

DRAW1280,404 — Y
130 GOTO 100
140 D = GET:GOTO 20

10 PMODE4,1
20 CLS:INPUT" VANISHING FACTOR

30 PCLS:SCREEN1,1
40 FORK= —126T0127 STEP 6
50 Y =191:X= K+V*K:IFABS(X) > 127 —

(X<1)THENX=SGN(X)127+ (X<1):
Y=111+ (X— K)*80/(/*K)

60 LINE(127 — K,111) — (127 —X,Y),PSET
70 LINE(127—K,80)— (127 —X,191 —Y),

PSET
80 NEXT
90 F=VT(1/6):Y=F
100 Y=Y*F:IFY>83 THEN140
110 LINE(0,108 + Y) — (255,108 + Y),PSET
120 LI N E(0,84—Y)— (255,84 — Y),PSET
130 GOT0100
140 IF INKEY$=" THEN140 ELSE20

By altering the position of the vanishing
points you can create quite different effects.
Enter a low value for V to start with, say 2.
This makes the lines on the bottom grid
converge to a point above the middle line (the
horizon) and those on the top grid converge to
a point below the horizon. It's this that gives
you the impression of hovering between the
two grids. You can dramatically alter the
appearance of a scene simply by raising or
lowering the imaginary horizon—try a value
of 10 to make the viewer feel he is crouching
down close to the floor. Only if the vanishing
point of the bottom grid is on the horizon
would you feel as though you were standing
normally on the floor.

The program draws the front-to-back lines

A perspective
grid is a quick

and easy way to add
depth to your picture

first in Lines 40 to 80 and then the side-to-
side lines in Lines 90 to 130. The variable K
gives the x coordinate of the start of each line
and then is multiplied by V to give the x
coordinate of the ends—along the top and
bottom edge of the screen. The IF ... THEN
condition in Line 50 just stops the computer
drawing off the screen. This is not strictly
necessary on the Acorns but it does make the
program run faster.

The remaining lines are drawn by the next
part of the program. The distance between
them gets less and less as they get further into
the distance and this is controlled by multip-
lying successive y coordinates by Vii/6. The
value of 1/6 was chosen to give the most
realistic result, but you can experiment with
different values.

DIMINISHING SIZES
The rules of perspective apply to objects as
well as lines on a grid. All objects appear
smaller and closer together in the distance*
The tops and bottoms of a line of equally-
sized trees, for instance, lie on a pair of
parallel lines which converge on the vanishing
point.

The trick here is that the brain relates size
to distance. If you see two objects which are
known to be of similar size, but one appears to
be half the size of the other, then the brain
assumes that one is twice as far away. So by
drawing objects diminishing in size, they can
be made to appear to recede.

Distant objects
appear smaller

and closer
together as this view shows

Special techniques
are needed to produce

the gradual shading used
to colour in these spheres

If you think about the distances between
objects, you will see that these, too, behave in
the same way. Objects which are equally-
spaced in reality will appear to get closer as
the distance increases.

There is a strict mathematical relationship
between these apparent differences—sizes ap-
pear according to the inverse of their distance
from the observer. As the distance gets larger,
1/space gets smaller. That is why, in the
first program, the separation between the
horizontal lines was raised to the power of 1/6.
The 6 here was simply chosen to give a
suitable spacing, and changing it does not
affect the appearance of recession.

The next program shows how to draw
a perspective view of a roadway lined with
telegraph poles:

10 BORDER 0: PAPER 0: INK 7: CLS
15 DEF FN Y(X) = ((174 —VP)/100)*(X —

128) + VP
16 DEF FN B(X)= ((20—VP)/100)*(X —

128) + VP
17 DEF FN S(T)=SF/SQR ((RW/2)/2 +

(T*PH)T2)
20 PRINT "'
30 INPUT "ENTER DISTANCE BETWEEN

POLES ❑ ";P
40 INPUT "ENTER WIDTH OF ROAD ❑ ";

RW
50 INPUT "ENTER HEIGHT OF POLES ❑ ";

PH

60 INPUT "ENTER HEIGHT OF VIEW ABOVE
ROAD ❑ ";RH

70 CLS
80 LET SF =1: LET SF =160/FN 5(0)
90 LET VP =160/PH*RH +100: LET X=228:

FOR T=1 TO 15
100 LET X=X-1: IF FN S(T) < FN Y(X)—

FN B(X) THEN GOTO 100
110 PLOT X,FN B(X): DRAW X— PEEK

23677,FN Y(X) — PEEK 23678: LET
XJ= (FN Y(X)—FN B(X))/10: LET YJ=FN
Y(X)—XJ

120 PLOT X —XJ,FN Y(X): DRAW
X — XJ — PEEK 23677,YJ — PEEK 23678:
DRAW X + XJ — PEEK 23677,YJ — PEEK
23678: DRAW X+ XJ —PEEK 23677,FN
Y(X) — PEEK 23678

130 PLOT 255—X,FN B(X): DRAW
255 —X— PEEK 23677,FN Y(X)— PEEK
23678

140 PLOT 255 — X — XJ,FN Y(X):DRAW 255 —
X —XJ — PEEK 23677,YJ — PEEK 23678:
DRAW 255 —X+ XJ — PEEK 23677,YJ —
PEEK 23678: DRAW 255 —X + XJ — PEEK
23677,FN Y(X) — PEEK 23678

150 NEXT T
160 GOTO 160

ECK'
10 DEFFNYT(X) = ((900—VP)/500)*

(X-640) + VP:DEFFNYB(X) = ((100
— VP)/500)*(X —640) + VP

20 DEFFNS(T)=SF/SQR((RW/2)I2+
(T*PH)T2)

30 INPUT "la DISTANCE BETWEEN POLES
P.1"•P

40 INPUT "WIDTH OF ROADM";RW
50 INPUT "HEIGHT OF POLESU";PH
60 INPUT "HEIGHT OF VIEW ABOVE

ROADN";RH
70 HIRES 0,1
80 SF =1:5F =800/FNS(0)
90 VP= 800/PH*RH +100:X=1140:FOR

T=1 TO 15
100 X= X —4:IF FNS(T)<FNYT(X)— FNYB

(X) THEN 100
110 LINE X/5,191— FNYB(X)/5,X/5,191

— FNYT(X)/5,1
115 XJ = (FNYT(X) — FNYB(X))/10:YJ=FNYT

(X) —XJ
120 LINE (X — XJ)/5,191 — FNYT(X)/5,

(X — XJ)/5,191 —YJ/5,1
125 LINE (X— XJ)/5,191 —YJ/5,(X+XJ)/5,

191 —YJ/5,1
126 LINE (X + XJ)/5,191 —YJ/5,(X+XJ)/5,

191— FNYT(X)/5,1
130 LINE 255—X/5,191— FNYB(X)/5,

255—X/5,191 — FNYT(X)/5,1
140 LINE 255 — (X + XJ)/5,191 — FNYT(X)/5,

255— (X +XJ)/5,191 —YJ/5,1
145 LINE 255— (X + XJ)/5,191 —YJ/5,255 —

(X — XJ)/5,191 —YJ/5,1
146 LINE 255— (X — XJ)/5,191 — YJ/5,255 —

(X — XJ)/5,191 — FNYT(X)/5,1
150 NEXT T
160 GET A$:IF A$="" THEN 160
170 NRM
180 RUN

10 MODE1:VDU19,0,7,0,0,0,19,3,0,0,0,0
20 PRINT"'
30 INPUT"DISTANCE BETWEEN POLES CI ",P
40 INPUT"WIDTH OF ROAD 0",RW
50 INPUT"HEIGHT OF POLES ❑ ",PH
60 INPUT"HEIGHT OF VIEW ABOVE

ROAD (11",RH
70 CLS:VDU23;8202;0;0;0;
80 SF =1:SF = 800/FNS(0)
90 VP =800/PWRH +100:X =1140:FOR

T = 1T015
100 REPEAT:X = X —4:UNTILFNS(T) > =

FNYT(X) — FNYB(X)
110 MOVEX,FNYB(X):DRAWX,FNYT(X):XJ =

(FNYT(X) — FNYB(X))/10:YJ = FNYT(X) —
XJ

120 MOVEX — XJ,FNYT(X):DRAWX— XJ,YJ:
DRAWX+ XJ,YJ:DRAWX + XJ,FNYT(X)

130 MOVE1280— X,FNYB(X):DRAW1280 — X,
FNYT(X)

140 MOVE1280 — X — XJ,FNYT(X):DRAW
1280 — X — XJ,YJ:DRAW1280 — X + XJ,YJ:
DRAW 1280 — X + XJ,FNYT(X)

150 NEXT
160 D=GET
170 DEFFNYT(X) = ((900— VP)/500)*(X —

640) + VP
180 DEFFNYB(X) = ((100 — VP)/500)*(X —

640) + VP
190 DEFFNS(T) = SF/SQR

((RW/2) A 2 + (T*PH) A 2)

10 PMODE4,1:PCLS:CLS
20 DEFFNYT(X) = ((900 —VP)/500)*(X —

640) + VP:DEFFNYB(X) = ((100 —VP)/
500)*(X-640) + VP:DEFFNS(T) = SF/SQR
((RW/2)T2 (T*PH)I2)

30 INPUT"DISTANCE BETWEEN POLES ";P
40 INPUT"WIDTH OF ROAD ";RW
50 INPUT"HEIGHT OF POLES ";PH
60 INPUT"HEIGHT OF VIEW ABOVE ROAD

";RH
70 SCREEN1,1
80 SF =1:SF =800/FNS(0)
90 VP =800/PWRH +100:X =1140:

FORT =1T015
100 X = X —4:IFFNS(T) < FNYT(X) — FNYB

(X) THEN100
110 LINE(X/5,191 — FNYB(X)/5) — (X/5,

191 — FNYT(X)/5),PSET:XJ = (FNYT(X) —
FNYB(X))/10:YJ = FNYT(X) —XJ

120 LIN E((X — XJ)/5,191 — FNYT(X)/5) —
((X —XJ)/5,191 —YJ/5),PSET:LINE— ((X+
XJ)/5,191 —YJ/5),PSET:LINE— ((X+
XJ)/5,191 — FNYT(X)/5),PSET

130 LINE(255— X/5,191 — FNYB(X)/5) —
(255— X/5,191 — FNYT(X)/5),PSET

140 LINE(255 — (X + XJ)/5,191 — FNYT

(X)/5) — (255 — (X + XJ)/5,191 — YJ/5),
PS ET: LI N E — (255 — (X — XJ)/5,191 —
YJ /5),PS ET: LINE — (255— (X — XJ)/5,
191 — FNYT(X)/5), PS ET

150 NEXT
160 IFINKEY$="" THEN160 ELSERUN

The programs let you specify exactly the view
of the road and then draws an accurate
perspective picture.

The program uses three functions to help
the calculations. FNS(T) works out the actual
height of each pole in pixels. FNYT(X) and
FNYB(X) work out the y coordinates of the top
and bottom of a pole for any x position. You
can think of these two functions as drawing
invisible lines along the tops and bottoms,
converging together at the vanishing point.

In the main part of the program, Line 80
calculates a scale factor, SF, which uses the
height of the previous pole to work out the
height of the next one. The variable VP works
out the y coordinate of the vanishing point,
which depends on both your height above
ground and the height of the poles. The x
coordinate is always in the centre for this
program.

Fifteen telegraph poles are drawn on each
side of the road controlled by the loop in
Lines 90 and 150. The poles on the right-
hand side are drawn first.

First of all, in Line 100, starting at the far
right of the screen, the program decreases the
x position until the height of the pole as
calculated by FNS(T) fits exactly between the
top and bottom lines worked out by FNYT and
FNYB. When this happens, Line 110 draws
the pole then the rest of the line works out XJ
and YJ which are scale factors for the top part.
Line 120 then draws the top part and the next
two lines repeat the whole procedure for the
poles on the left.

SHADING
As well as perspective there are other effects
you can use to give a feeling of depth and
three-dimensionality to your graphics. The
most useful of these is shading. Unfortu-
nately, one of the great limitations of colour
graphics on home computers is that there is
no way of controlling the intensity of the
colours. This makes it very difficult to create
any realistic shading effects needed for solid-
looking 3-D objects.

Large computers offer hundreds of shades
of each colour so it is easy to draw realistic-
looking objects. Have a look at the picture on
page 421, for example. But home computers
usually have no more than eight colours, so
what's needed is a method of merging the
colours more gradually.

PIXEL PLANETS
The way to add shading is to colour the pixels
individually, lighting up only a few for dark
areas and lighting almost all of them for
bright areas. The number of coloured pixels
in any area determines the brightness of that
part of the object. So by gradually turning on
more and more pixels from one side to the
other you can create quite reasonable shading
effects. The next program uses this technique
to draw a group of spheres. They look so much
like planets suspended in space that the
program also adds a starry background and
even a ring round one or two of the spheres!

a
10 BRIGHT 0: BORDER 0: PAPER 0: INK 7:

CLS
20 FOR I =1 TO 100: PLOT

RND*255,RND*175: NEXT I
25 LET F = 0: FOR T=1 TO 3
30 LET CL = RND*5 + 2
40 LET XC = RND*195 + 30: LET

YC=RND*115+30
50 LET S= RND*30
60 FOR K= —S TO S
70 IF INT (K) = 0 AND F=0 THEN PLOT

INVERSE 1; OVER 1;XC —1:2,YC: DRAW
INK CL;L*4,0: LET F=1

80 LET X= SQR (S*S — K*K)
90 LET X2 = 2*X
100 FOR L= —X TO X
110 PLOT INK CL; INVERSE 1;XC+L,YC+K:

IF RND*X2 —X < L THEN PLOT INK
CL;XC+ L,YC+K

120 NEXT L
130 NEXT K
140 NEXT T
150 PAUSE 0

10 DEFFNA(X) = INT(RND(1)*X + 1):HIRES 7,0
20 FOR K=1 TO 100:PLOT FNA(360) —1,

FNA(200) —1,1:NEXT K
25 FOR T=1 T0 8
30 XC = FNA(200) + 30:YC = FNA(130) + 30
40 CL= FNA(3):CL= CL— (CL =3)

50 S = FNA(25) + 5
60 FORK= —S TO S
70 IF K=1 AND FNA(4) =1 THEN CIRCLE

XC,YC,S*1.5,FNA(4),1
80 X = SQR(S*S — K*K)
90 X2 = 2*X
100 FOR L= —X TO X STEP 2
120 PLOT XC+ L,YC— K,1
130 NEXT L,K
140 NEXT T
150 GOTO 150

10 MODE1:VDU19,0,4,0,0,0,19,3,2,0,0,0
20 FORK =1T0200:PLOT69,RND(1280),RND

(1024):NEXT
25 FOR T=1 T08
30 VDU29,(RND(250)+30)*4;(RND

(200) + 30)*4;
40 CL = RND(3):BC = 0
50 S=RND(20)+10
60 FORK= — SOTO S
80 X = SQR(S*S — K * K)
90 X2= 21(

100 FORL= —X TO ❑ X
110 IF RND(X2) —X> L ❑ THEN GCOL0,CL ❑

ELSE GCOL0,BC
120 PLOT69,1:4,104
130 NEXT:NEXT
135 IF RND(2) =1 THEN MOVES*8,0:

DRAW—S*8,0
140 NEXT

10 PMODE3,1:PCLS3:SCREEN1,0
20FORK =1T0100:PSET(RND(256) —1,RND

(192) —1,2):NEXT
25 FOR T=1 TO 8
30 XC= RND(195)+30:YC= RND(131) + 30
40 CL=RND(3):CL=CL— (CL = 3)
50 S= RND(25) + 5
60 FORK= —S TOS
70 IFK =1 ANDRND(4) =1 THENCIRCLE(XC,

YC),S*1.5,RND(4),0
80 X = SQR(S*S — ICK)
90 X2 = 2*X
100 FORL= —X TOX STEP2
110 IFRND(X2) —X< L THENCOLOR

CL ELSECOLOR3
120 PSET(XC + L,YC — K)
130 NEXTL,K
140 NEXT T
150 GOTO 150

The starry background is drawn by Line 20
which prints a hundred or so dots in random
positions on the screen. Eight spheres are
drawn in all (or three on the Spectrum)
controlled by the loop in Lines 25 and 140.
Line 30 chooses a random position for the
centre of each sphere, the next lines choose a
random colour and a random size.

The general procedure for drawing each
sphere is to start at the bottom and fill it in a
line at a time. This is controlled by the value K
which starts at — S, the y coordinate of the
bottom of the circle and goes to + Sat the top.
Line 80 works out the x coordinate of the start
of each line using the equation for a circle.
X2 is the length of each line.

Lines 100 to 130 colour in the lines. The
variable L can be thought of as the luminosity
or brightness of each region and its value
depends on the distance from the edge of the
circle, increasing from one side to the other. A
random number, depending on the length of
the line, is chosen by Line 110, and if this is
less than that region's brightness the colour is
set to black. If it is more, then the colour is set
to the random colour chosen earlier.

Finally, Line 70 on the Spectrum, Dragon
and Tandy and Line 135 on the Acorns draw a
`ring' around one or two of the spheres.

See if you can adapt the routine to shade
other shapes such as a cylinder, or a flat plane.

Once you've told your computer
about your project you can use the
program to work out a realistic
schedule and pinpoint any potential
holdups

Before you can use the program to evaluate a
particular project you have to break down the
project into a number of individual activities
and estimate the time taken for each one. To
do this it is almost always best to sketch out a
rough PERT network as shown in the
example last time. It doesn't matter if the
network gets rather tangled at this point as the
computer will sort all that out for you.

As you draw out the chart, write the
descriptions of the activities along the lines
and a description of the events in the circles.
Often, though, events won't need a descrip-
tion so you can leave them blank. The
Spectrum will allow up to 20 characters for
the activities and events, the Commodore
allows up to 80 and the others up to 255. But
to save on memory it's best to be brief. If you
know more or less how long the activities will
take then write the duration in too (see later
for how to estimate the times). Remember,
though, that all times must be in the same
units whether they are hours, half-days,
weeks or whatever.

In order for the program to work, the
network must also be logically possible.
There must be only one start and one finish
point and there mustn't be any loops.

To help you plan out the chart keep asking
yourself these three questions: 'what can be
done at the same time as this activity?', 'what
must be done before this activity can start?'
and 'what cannot be started until this activity
is completed?'.

Working out a PERT network forces you
to think quite hard about what needs to be
done. But the advantages are that you can then
use the computer to work out the far more
complicated questions of exactly when you
should start all these activities, whether the
job can be done at all, which activities are
holding the whole project up, or which can
you delay for a few hours, days or weeks.

INPUTTING ACTIVITIES
When you think you've worked out most of
the chart the next thing to do is to number all
the events and activities, and INPUT them into
the program. The order of the numbers is not
important but the computer needs them to
work with. A common method is to number

USING THE PROGRAM
PLANNING

DRAWING A NETWORK
INPUTTING ACTIVITIES

PROBABLE AVERAGE TIMES

INPUTTING EVENTS
CHECKING FOR INCONSISTENCIES

CRITICAL PATH CALCULATIONS
SLACK TIMES AND

START TIMES

events 10, 20, 30 and so on like line numbers,
so that any extra ones inserted later can have
intermediate numbers 15, 25 . . . Activities
can be numbered, for convenience, by referr-
ing to the start and end events. For instance
1020 is the activity between events 10 and 20.
Or you can use the same numbers for both the
events and activities if you like.

When defining the activities and events the
computer prompts you for the number and
description, and then it asks you for the
average time and the 90 % sure time. These
are explained next.

INPUTTING THE TIMES
In real life you're very rarely going to be
certain how long an activity will take—even if
you've done it many times before. However,
you can usually estimate the average time and
take a guess at the 90% sure time. This is the
time within which you're fairly certain it will
be done. And this is all the program requires
you to do. These inputs are deceptively easy
but in fact the program has to cover four quite
different situations. You don't need to know
how these are worked out as the program does
it automatically, but it does help to under-
stand what they are.

The first case is the rare occasion when you
are absolutely certain of the time. For in-
stance, if the instructions say 'leave for 24
hours' then that is what you must do. When
using the program put both the average and
the 90 % sure times in as the same value.

The second case is the time that you are
fairly sure about. For instance, you know you
can drive to the station in about 30 minutes
because you've done it many times before, but
you allow 40 minutes to be on the safe side.
For this you'd input 30 as the average time
and 40 as the 90 % sure time. This corre-
sponds to the top graph in the diagram on
page 1469, which is called a normal Gaussian
curve.

The third type is the 'wait until it happens'
time. For instance, you won't know if the roof
repairs have worked until it rains. This is
shown in the second graph. Here the 90 %
sure time is about two and a half times the
average—the average in this case being found
from records of rainy days for the month.

The fourth case is the 'all or nothing' time.
For instance, it may be very unlikely that a
crucial part in a car is broken (say one in a
hundred) but if it is it will take 10 days to
repair. In this case you input the maximum
time (10 days) as the 90% sure time, and the
arithmetic average (10 times i+,„ or A of a day)
as the average. This is shown in the third
graph.

There is no need to tell the computer which
type of graph you're using (if any). The
computer just takes your two time estimates
and proceeds accordingly. If they are approx-
imately equal (up to a ratio of 1 to 11) it uses
the Gaussian curve (top graph). If they are
further apart (the 90 % sure time between 1
and 2-1. times the average) it uses a modified
Gaussian curve (not shown). If it is between 21
and 3 times the average it uses the exponential
curve (middle graph). And if it is more than
three times the average it uses the bimodal
curve (bottom graph).

The reason the program needs to take so
much care over the uncertain times is because
the critical path may very well change if all or
some of the uncertainties conspire to their
worst cases (or their best).

INPUTTING THE EVENTS
When you've input all the activities you
should then enter the events. This is very
easy, simply enter a number and a description
for every event on your chart.

If you find you have made a mistake you
can delete any event or activity with the delete
option or alter it by defining it again and
entering the correct values.

The information entered into the computer
can be displayed in several different tables.
So, assuming you've typed in the activities
and events, choose the option to Show Details
and you'll see a neat list of everything you've
entered. If you have a printer connected you
can get a print-out too.

The point of the program, though, is to
calculate the critical path through your pro-
ject so you can work out the most efficient
way to carry out all of your activities.

DATA CHECK
Before the computer can make any calcul-

ations it must check that the network is
logical. If there were any loops the program
would go round in circles trying to do the
calculations and the program would crash.
The Acorn does the data check automatically
when you ask for a calculation but with the
other programs you have to choose this option
yourself. If all is well, the program will print
out the numbers of the start event and the end
event. If there are any inconsistencies the
program will print out a message telling you
exactly what's wrong, identifying any loops or
breaks.

THE CRITICAL PATH
At last you can select the option to calculate
the critical path. There are two options. The
first uses the average times that you input for
the activities while the second uses the un-
certain times. Run the average time first.

The display shows each activity with its
code number and description. It then tells
you the time when this activity is able to start,
the time it must finish, if there is any slack,
and whether this particular activity is actually
critical.

The times are in the same units as those
you input for the activities. So if you've used
days, all the figures in the display refer to
days. For example, if the display tells you that
activity 3 is able to start 6, must finish 10 and
has slack 2, this means the earliest you can
start is on day six but with two days slack
you could, if it is more convenient, put off
starting until day eight without upsetting the
whole project.

The activities that have slack 0 mean that
you must start on the day shown or the project
will be delayed. These are the critical activ-
ities and it's a good idea to mark these on your
chart, in red, say. If the starting date for these
activities starts to slip you'll have to think
about rearranging the rest of your project to
make up the time.

One of the advantages of this program is
that you can try out many different arrange-
ments of activities to find the quickest, or
most efficient.

UNCERTAIN TIMES
If many of the times you input were un-

certain, and the 90 % sure time was different
to the average time, then you should use the
other calculate option which takes these un-
certainties into account. The critical path
might change when uncertain times are used.

When you choose this option the computer
takes each activity and, using the appropriate
graph mentioned earlier, it selects a random
time within the limits allowed. Using these
times it then calculates the critical path for the
whole network exactly as it did in the last
option. It also stores away in memory the
start, end and slack times for each activity. It
does this 44 more times, selecting a new
random number each time. (The computer's
progress is shown on the screen.) The 45 cases
are needed to give a reasonably random
sample. The final display printed out takes all
these samples into account.

The start and end times are averages of the
45 cases and so are quite reliable. The slack
time is also an average, but only of those times
when there was some slack—a critical activity
gives no slack at all.

The critical value shows the percentage of
times that the activity was part of the critical
path. This may be 100 % in which case it is
always critical, 0 % when it is never critical, or
any value in between. For instance, an activity
may be critical 33% of the time which means
that the probability of it being critical on any
one occasion is a third.

Finally, the last value that's shown is the
standard deviation of the slack time. This tells
you how much the slack time is likely to vary
and gives you an idea of how reliable it is. For
example, if the slack was 1.5 and the deviation
was 1 then the slack may vary from about .5 to
2.5, so the slack time printed out cannot be
relied on. If, however, the slack was 1.5 and
the deviation was .1 then there's likely to be
little variation, so the slack time is reliable.

330 PRINT w$(4);1;":";: INPUT u$(x):
PRINT u$(x): LET s(x) = 0: RETURN

350 LET ee = ee +1: LET e(ee) =x: LET
s(x) = —1: LET f(x) = 0: LET u(x)=u

360 LET t(x) = 0: LET n(x) = 0: LET
u$(x) ="": RETURN

400 LET z=x: FOR f=1 TO ee: IF e(f) = z
THEN LET e=f

420 NEXT f: LET e(e)=e(ee): LET
u(z) = zz +1: LET ee = ee —1: RETURN

450 LET z=u— INT ((u-1)/mh)*mh: LET
y=2: LET x=0

460 IF x=0 THEN IF 0 =u(z) OR
zz +1 = u(z) THEN LET x=z

470 IF u=u(z) THEN LET x=z: RETURN
480 IF y=1 ORE 0=u(x) THEN RETURN
490 LET z=z+y—mh*INT ((z+y-1)/mh):

LET y=y+y—mh*INT ((y+y-1)/mh):
GOTO 460

500 LET x(1) = ma: LET x(2) = me: LET
x(3) = mh: LET x(4) = aa: LET x(5) = ee:
LET x(6) =ck: LET x(7) =se: LET x(8) =fe:
PRINT "press[ENTER] ten times": SAVE
f$+"x" DATA x(): FOR x=1 TO 100:
NEXT x

510 SAVE f$+"a" DATA a(): SAVE f$+"e"
DATA eft SAVE f$ "f" DATA f(): SAVE
f$+"g" DATA g(): SAVE f$+"n" DATA
n(): SAVE f$+"s" DATA sO: SAVE
f$+"t" DATA to: SAVE f$+"u" DATA
u(): SAVE f$ "u$" DATA u$(): RETURN

600 LOAD f$+"x" DATA x(): LET ma =x(1):
LET me= x(2): LET mh = x(3): LET
aa =x(4): LET ee =x(5): LET ck=x(6): LET
se= x(7): LET fe = x(8): GOSUB 12

610 LOAD f$+"a" DATA a(): LOAD f$+"e"
DATA e(): LOAD f$+"f" DATA f(): LOAD
f$+"g" DATA g(): LOAD f$+"n" DATA
n(): LOAD f$+"s" DATA s(): LOAD
f$ + "t" DATA to: LOAD f$+"u" DATA
u(): LOAD f$ "u$" DATA u$(): LET
false= 0: RETURN

700 LET x(1) = ma: LET x(2) = me: LET
x(3) = mh: LET x(4) = aa: LET x(5) = ee:
LET x(6) =ck: LET x(7) =se: LET x(8) =fe:
VERIFY f$ + "x" DATA x()

710 VERIFY f$+"a" DATA a(): VERIFY
f$+"e" DATA e(): VERIFY f$ "f" DATA
f(): VERIFY f$+"g" DATA go: VERIFY
f$+"n" DATA n(): VERIFY f$+"s" DATA
s(): VERIFY f$+"t" DATA to: VERIFY
f$+"u" DATA u(): VERIFY f$ + "4"
DATA u$(): RETURN

800 GOSUB 942
810 FOR a=1 TO aa: LET x=a(a): GOSUB

932
820 LET y = y + 1 + (LEN u$(x) >4): IF

y>20 AND a <aa THEN GOSUB 940:
GOSUB 942

830 NEXT a: GOSUB 940
840 GOSUB 946: FOR e=1 TO ee: LET

x=e(e): GOSUB 933
850 LET y = y +1 + (LEN u$(x) >4): IF

y>20 AND e<ee THEN GOSUB 940:
GOSUB 946

860 NEXT e: GOTO 940
932 PRINT FN 1$(FN u(s(x)));FN I$(FN

u(f(x)));FN I$(t(x));FN I$(n(x));ABS u(x);
"0";u$(x): RETURN

933 PRINT ABS u(x) ,u$(x): RETURN
940 PRINT "press [ENTER] to continue":

INPUT f$: CLS : RETURN
942 CLS : PRINT "START FINISH TIME 90%

CODE TEXT"
944 PRINT "EVENT EVENT ALLOW SURE":

LET y=3: RETURN
946 PRINT "CODE","TEXT": RETURN
948 PRINT "PREV AFTER MINE ❑ MAX":

LET y=3: RETURN
1000 LET ck = true: FOR a =1 TO aa: LET

x=a(a)
1020 LET z=s(x): IF s(z) <0 OR zz<u(z)

THEN PRINT u(x);w$(5);u(z): LET
ck = false

1030 LET z=f(x): IF s(z) <0 OR u < u(z)
THEN PRINT u(x);w$(5);u(z): LET
ck = false

1040 NEXT a: IF ck =false THEN GOTO 1750
1050 LET e =1
1060 LET z=e(e): IF s(z) <0 THEN GOSUB

400: IF e< =ee THEN GOTO 1060
1070 LET e=e+1: IF e< =ee THEN GOTO

1060
1080 FOR e=1 TO ee: LET z=e(e): LET

s(z) = 0: LET f(z) = 0: NEXT e
1082 FOR a =1 TO aa: LET x=a(a): LET

s(f(x))=x: NEXT a
1090 LET se=0: FOR e=1 TO ee: LET

z=e(e): IF s(z) > 0 THEN GOTO 1096
1092 IF se=0 THEN LET se =z: GOTO 1096
1094 PRINT w$(1);u(z): IF se< =mh THEN

PRINT w$(1);u(se): LET se = mh +1
1096 NEXT e: IF se=0 THEN PRINT "ALL

EVENTS HAVE PRECEDING";a$
1098 IF se=0 OR se >mh THEN GOTO 1750
1100 FOR e =1 TO ee: LET z=e(e): LET

t(z) = 0: LET n(z) =0: NEXT e: LET
t(se) =1

1110 LET last=1: FOR c=2 TO ee+2: IF
last< > c —1 THEN GOTO 1170

1120 FOR a=1 TO aa: LET x=a(a): LET
y=s(x): IF t(y) < >c —1 THEN GOTO
1160

1130 IF y=f(x) THEN GOSUB 1200: GOTO
1160

1140 IF y< >se THEN LET y=s(y): GOTO
1130

1150 LET y=f(x): LET s(y)=s(x): LET
f(s(y))=y: LET t(y)=c: LET fe = y: LET
last = c

1160 NEXT a
1170 NEXT c: PRINT "start event = ";u(se);",

end event =";u(fe)
1180 FOR e=1 TO ee: LET y=e(e)
1190 IF f(y) = 0 AND y< >fe THEN PRINT

u(y);"NOT LINKED TO END EVENT": LET
ck = false

1192 NEXT e: IF ck THEN GOTO 1300
1194 GOTO 1750
1200 CLS : PRINT "THERE IS A LOOP AS

FOLLOWS": PRINT "EVENTS ...": LET
xa = a(a)

1210 LET x=f(xa): PRINT u(x): LET y=s(xa):
PRINT u(y)

1220 LET y=s(y): PRINT u(y): IF y< >x
THEN GOTO 1220

1230 RETURN
1300 LET k=1: LET ak= aa: IF aa =1 THEN

LET k=0

1310 LET ak=INT ((ak+k)/2): IF ak = 0
THEN GOTO 1500

1320 LET k = 0: FOR a = ak +1 TO aa: LET
b =a —ak: LET x=a(a): LET y=a(b): LET
xe=s(x): LET ye=s(y)

1330 IF t(ye) + ye/zz < =t(xe) + xe/u THEN
GOTO 1360

1340 LET a(a)=y: LET a(b) = x: LET k=1
1360 NEXT a: GOTO 1310
1500 LET n(fe) = last: FOR d= last-1 TO 1

STEP —1
1520 FOR a=1 TO aa: LET x=a(a): IF

n(f(x)) < >d+1 THEN GOTO 1560
1550 LET y=s(x): LET f(y) =f(x): LET

n(y)=d
1560 NEXT a: NEXT d
1600 FOR a =1 TO aa: LET g(a)=a(a): NEXT

a: LET k=1 LET ak = aa: IF aa =1 THEN
LET k=0

1610 LET ak=INT ((ak+k)/2): IF ak = 0
THEN GOTO 1700

1620 LET k = 0: FOR a =ak +1 TO aa: LET
b=a—ak: LET x =g(a): LET y=g(b): LET
xe=f(x): LET ye = f(y)

1630 IF n(ye) + ye/u< =n(xe)+xe/u THEN
GOTO 1660

1640 LET g(a)=y: LET g(b)=x: LET k =1
1660 NEXT a: GOTO 1610
1700 LET ck = true: RETURN
1750 LET ck = false: PRINT AT 21,8;"ANY KEY

TO CONTINUE": PAUSE 0: RETURN
2000 FOR a =1 TO aa: LET x=a(a): LET

z(x)=t(x): NEXT a: GOSUB 2100
2020 FOR a=1 TO aa: LET x=a(a): LET y(x)

= (z(f(x))—y(s(x))=z(x))*100: NEXT a
2030 FOR b=1 TO aa STEP 5: CLS : FOR

a =b TO aa + FN a(b +4 —aa): LET
x=a(a)

2040 PRINT a$;" 0 ";u(x); " = ";u$(x)(T016)
2050 LET c=y(s(x)): LET d=z(f(x)): PRINT

"can startD";c;",must end0";d
2060 PRINT "slack 0 ";d — c — z(x);"

❑ (critical 0";y(x);"%)": IF t =12 THEN
PRINT "std devn=";q(x);

2070 PRINT : NEXT a: GOSUB 940: NEXT b:
RETURN

2100 FOR e=1 TO ee: LET y(e(e)) =0: NEXT
e

2110 FOR a=1 To aa: LET x=a(a): LET y(f
(x)) =y(f(x)) + FN z(y(s(x)) —y(f(x))
+z(x)):NEXT a

2120 FOR e=1 TO ee: LET z(e(e))=y(fe):
NEXT e: FOR a =aa TO 1 STEP —1: LET
x=g(a)

2130 LET z(s(x)) =z(s(x)) + FN a(z(f(x))
—z(s(x))—z(x)): NEXT a: RETURN

3000 FOR a=1 TO aa: LET x=a(a): LET
p(x) = 0: LET q(x) =0: LET y(x) = 0: NEXTa

3020 FOR e=1 TO ee: LET z=e(e): LET
p(z) =0: LET q(z) =0: NEXT e

3030 FOR m=1 TO 43 STEP 3: FOR a =1 TO

aa: LET w(a)=2*RND-1: NEXT a
3040 FOR n=0 TO 4 STEP 2: CLS : PRINT

"STARTING CASE D ";m + n/2;" ❑ OF 45"
3050 FOR a=1 TO aa: LET x=a(a): LET

tx = t(x): IF tx =0 THEN LET z(x) =0:
GOTO 3080

3052 LET nx=n(x): IF nx=tx THEN LET
z(x) =tx: GOTO 3080

3054 LET w=FN w(w(a) + n/3): IF
nx> =tx*3 THEN LET
z(x)= nx*(w <tx/nx): GOTO 3080

3060 IF nx>tx*2.34 THEN LET z(x) = —tx*LN
w: GOTO 3080

3070 LET w=FN x(w— .5): LET z(x) = ABS
(tx+W(nx—tx))

3080 NEXT a
3090 GOSUB 2100
3100 FOR a=1 TO aa: LET x=a(a): LET z=z

(f(x)) —y(s(x)) —z(x)
3110 LET p(x)=p(x)+z: LET q(x)=q(x)

+ ez: LET y(x) = y(x) + (z <1.e —6):
NEXT a

3120 FOR e=1 TO ee: LET z=e(e): LET
p(z)=p(z)+y(z): LET q(z) =q(z) +z(z):
NEXT e: NEXT n: NEXT m

3200 FOR e=1 TO ee: LET z=e(e): LET
y(z) =VAL (FN I$(p(z)/45))

3210 LET z(z) =VAL (FN I$(q(z)/45)): NEXT e
3220 FOR a =1 TO aa: LET x=a(a): LET

y=y(x): LET y(x) =VAL ((STR$
(y/45*100) +"0 ❑ ❑ ")(TO 4))

3230 IF p(x) <1.e — 2 THEN LET p(x) =0
3240 LET z= (45— y) + .1e— 9: LET z(x)

=z(f(x)) —y(s(x)) —VAL (FN I$(p(x)/Z))
3250 LET q(x) = SQR ABS ((q(x)—p(x)*

p(x)/z)/((z-1)+.1e-9)): IF
q(x)<1.e-6 THEN LET q(x) =0

3260 NEXT a: GOTO 2030

600 OPEN1,8,8,"0:"+ F$+",S,R":1NPUT
1,MA,ME,MH,AA,EE,CK:GOSUB12

610 IFCKTHENINPUT#1,SE,FE
620 FORA =1TOAA:INPUT# 1,X,U%(X),

S%(X),F%(X),T(X),N(X),G%(A),U$(X):
A%(A) =X:NEXTA

640 FORE =1TOEE:INPUT #1,X,U%(X),
S%(X),F%(X),T(X),N(X),U$(X):E%(E) =
X:NEXTE

650 ,INPUT # 1,X:IFX > 0TH EN
U%(X) =ZZ+1:GOT0650

660 CLOSE1:RETURN
700 OPEN15,8,15,"S0:" + F$:CLOSE15:

RETURN
800 GOSUB942
810 FORA =1TOAA:X= A%(A):GOSUB932
820 Y=Y+1—(LEN(U$(X))>12):IFY>20

AND(A<AA)THENGOSUB940:
GOSUB942

830 NEXTA:GOSUB940:PRINT"a EVENTS"
:Y=3

840 FORE =1TOEE:X= E%(E):XP = U%(X):
GOSUB950:PRINTU$(X)

850 Y=Y+1—(LEN(U$(X))>12):IFY>20
AND E<EE THENGOSUB940:GOSUB946

860 NEXTE:GOT0940
900 INPUT "ORESTART PROGRAM (Y/N)";

AN$:IF AN$="N" THEN 50
910 IF AN$< >"Y" THEN 900
920 RUN
932 XP=FNU(S%(X)):GOSUB950:XP=FNU

(F%(X)):GOSUB950:XP=T(X):GOSUB950:
XP=N(X)

933 GOSUB950:XP=ABS(U%(X)):
GOSUB950

935 PRINT:PRINT "TEXT = ";U$(X):RETURN
940 IFKK$< >"Y" THENPRINT111PRESS

RETURN TO CONTINUE":INPUTF$:PRINT
CLS$;:RETURN

941 RETURN
942 PRINTCLSraACTIVITIES"

943 PRINT"START FINISH TIMED ❑ 90%"
944 PRINT"EVENT EVENT ❑ ❑ ALLOW SURE

❑ ❑ CODE":Y=3:RETURN
950 XP$=LEFTVSTR$(XP)+"01=1000

❑ ",6):PRINTXP$;:RETURN
960 PRINT "QOUTPUT TO PRINTER (Y/N)?' ,

 970 GET KK$:IF KK$< >"N" AND KK$< >
"Y" THEN 970

980 RETURN
1000 CK=TR:FORA=1TOAA:X=A%(A)
1020 XE = S%(X):I FS%(XE) <0ORZZ< U%

(XE)THENPRINTU%(X);W$(5)U%(XE):
CK= FA

1030 Z= F%(X):IFS%(Z) <0ORZZ< U%(Z)
THENPRINTU%(X);W$(5);U%(Z):CK= FA

1040 NEXTA:IFCK= FATHEN1750
1050 E=1
1060 X= E%(E):IFS%(X) <0THENGOSUB

400:IF E< =EE THEN1060
1070 E=E+1:IFE<=EE THEN1060
1080 FORE =1TOEE:X = E%(E):S%(X)= 0:F%

(X) = 0:NEXTE
1082 FORA =1TOAA:X=A%(A):S%(F%(X))

=X:NEXTA
1090 SE= 0:FORE =1TOEE:X = E%(E):IFS%

(X) > 0THEN1096
1092 IFSE=0THENSE=X:GOT01096
1094 PRINTW$(1);U%(X):IFSE < = MHTHEN

PRINTW$(1);U%(SE):SE=MH +1
1096 NEXTE:IFSE=0THENPRINT"ALL

EVENTS HAVE PRECEEDINGPI";A$
1098 IFSE=00R(SE>MH)THEN1750
1100 FORE = 1TOEE:X = E%(E):T(X) =0:

N(X) = 0:NEXTE:T(SE)=1
1110 LA=1:FORC=2TOEE+2:IFLA

<>C-1THEN1170
1120 FORA =1TOAA:X=A%(A):Y = S%(X):

IFT(Y)< >C-1THEN1160
1130 I FY = F%(X)THENGOSUB1200:GOTO

1160
1140 IF(Y < >SE)THENY=S%(Y):GOT01130
1150 Y=F%(X):S%(Y)=S%(X):F%(S%(Y))=

Y:T(Y)=C:FE=Y:LA=C
1160 NEXTA
1170 NEXTC:PRINT"START EVENT=";

U%(SE);", END EVENT=";U%(FE)
1180 FORE=1TOEE:Y=E%(E)
1190 IFF%(Y) = 0AND(Y < > FE)THENPRINT

U%(Y);"NOT LINKED TO END EVENT"
:CK= FA

1192 NEXTE:IFCKTHEN1300
1194 GOT01750
1200 PRINTCLS$;"THERE IS A LOOP AS

FOLLOWS": PRINT"EVENTS...":XA = A% (A)
1210 X= F%(XA):PRINTU%(X):Y=S%(XA):

PRINTU%(Y)
1220 Y=S%(Y):PRINTU%(Y):IFY< >XTHEN

1220
1230 RETURN
1300 K =1:AK = AA:I FAA = 1THENK = 0
1310 AK= INT((AK+ K)/2):IFAK = 0THEN

1500
1320 K = 0:FORA = AK +1TOAA:B =A

- AK:X=A%(A):Y=A%(B):XE=S%(X):
YE=S%(Y)

1330 IFT(YE)+YE/ZZ< =T(XE)+XE/ZZ
THEN1360

1340 A%(A) =Y:A%(B) =X:K =1
1360 NEXTA:GOT01310
1500 N (FE) = LA:FORD = LA - 1TO1STEP -1
1520 FORA =1TOAA:X = A%(A):IFN

(F%(X)) < >D+1THEN1560
1550 Y=S%(X):F%(Y)= F%(X):N(Y)=D
1560 NEXTA,D
1600 FORA=1TOAA:G%(A)=A%(A):

NEXTA:K =1:AK = AA:IFAA =1THENK = 0
1610 AK = INT((AK + K)/2):IFAK = 0THEN

1700
1620 K 0:FORA = AK + 1TOAA:B = A - AK:

X=G%(A):Y=G%(B):XE= F%(X):
YE= F%(Y)

1630 IFN(YE)+YE/ZZ< =N(XE)+XE/ZZ
THEN1660

1650 G%(B)= X:G%(A) = Y:K =1
1660 NEXTA:GOT01610
1700 CK=TR:RETURN
1750 CK=FA:INPUT"HIT RETURN";HG$:

RETURN
2000 FORA=1TOAA:X=A%(A):Z(X)=T(X):

NEXTA:GOSUB2100
2020 FORA =1TOAA:X =A%(A):Y(X)=

- (Z(F%(X))-Y(S%(X))=Z(X))*100:
NEXTA:GOSUB2100

2030 FORB=1TOAASTEP4:PRINTCLS$:FOR
A = BTOAA + FNA(B + 4 - AA):X = A%(A)

2040 PRINT:PRINTA$;U%(X);" =";U$(X)
2050 C=Y(S%(X)):D=Z(F%(X))
2055 PRINT"ABLE TO START";INT

(C)*1 00/100;"MUST FINISH";1NT(D*100)
/100

2060 PRINT"SLACK";INT((D - C - Z(X))*
100)/100;"(CRITICAL";INT(Y(X) * 100)/
100;"%)"

2065 IFT=12THENPRINT"STD DEVN="INT
(Q(X) * 100)/100;

2070 PRINT:NEXTA:GOSUB940:NEXTB:
RETURN

2100 FORE=1TOEE:Y(E%(E))=0:NEXTE
2110 FORA=1TOAA:X=A%(A):Y(F%(X))=

Y(F%(X)) + FNZ(Y(S%(X))-Y(F%(X))+Z
(X)):NEXTA

2120 FORE=1TOEE:Z(E%(E))=Y(FE):
NEXTE: FORA = AA TO1STEP - 1:X = G% (A)

2130 Z(S%(X)) =Z(S%(X)) + FNA(Z(F%(X))
-Z(S%(X)) -Z(X)):NEXTA:RETURN

3000 FORA=1TOAA:X=A%(A):P(X)= 0:Q
(X) =0:Y(X) =0:NEXTA

3020 FORE=1TOEE:X= E%(E):P(X)= 0:0
(X) = 0:NEXTE

3030 FORM =1T043STEP3:FORA=1TOAA:
W(A)=2*RND(0)-1:NEXTA

3040 FORN=0TO4STEP2:PRINTCLS$;

"STARTING CASE"M +N/2"OF 45"
3050 FORA =1TOAA:X=A%(A):TX = T(X):IF

TX=0THENZ(X)=0:GOT03080
3052 NX= N(X):IF(NX=TX)THENZ(X) =TX:

GOT03080
3054 W=FNW(W(A)+N/3):IFNX> =TX*3

THENZ(X) = - NX*(W < TX/NX):GOTO 3080
3060 IFNX>TX*2.34THENZ(X)= -TX*LOG

(W):GOT03080
3070 W= FNX(W- .5):Z(X)= ABS(TX +

(NX -TX))
3080 NEXTA
3090 GOSUB2100
3100 FORA =1TOAA:X =A%(A):Z = Z(F%(X))

- Y(S%(X)) -Z(X)
3110 P(X)=P(X)+Z:Q(X)=Q(X)+Z*Z:Y(X)

= Y(X) + (Z <1.E - 6):NEXTA
3120 FORE = 1TOEE:X = E%(E):P(X) = P(X)

+Y(X):Q(X) =Q(X) +Z(X):NEXTE,N,M
3125 IF KK$="Y" THEN OPEN 4,4:CMD4
3200 FORE=1TOEE:X=E%(E):Y(X)=VAL

(LEFT$(STR$(P(X)/45),6))
3210 Z(X) = VAL(LEFT$(STR$(Q(X)/45),6)):

NEXTE
3220 FORA=1TOAA:X=A%(A):Y=Y(X):

Y(X) = -VAL(LEFTVSTRVY/45100),4))
3230 IFP(X)<1.E-2THENP(X)= 0
3240 Z = (45-Y) + .1E -9:Z(X) = Z(F%(X))

- Y(S%(X)) -VAL(LEFT$(STR$(P(X)/Z),6))
3250 Q(X)=SQR((Q(X)-P(X)*P(X)/Z)/((Z

- 1)+.1E-9)):IFQ(X)<1.E-6THENQ
(X) = 0

3260 NEXTA:GOT02030

LI
500 IFU%(X) <0GOSUB870:PRINT;ABS(U%

(X))TAB(10)U$(X):GOTO 530
510 IF(EE=ME)THENPRINTW$(2);F$:

RETURN
520 GOSUB540
530 PRINTW$(4);F$:INPUTU$(X):

S?X=0:RETURN
540 EE=EE+1:E?EE=X:S?X= -1:F?X =0:

U%(X) = U
550 T(X) =0:U$(X) "":RETURN
560 Z = X:FORF%=1TOEE:IFZ= E?F%THEN

E%= F%
570 NEXTF%:E?E%= E?EE:U%(Z)=ZZ +1:

EE = EE - 1: RETURN
580 Z=U-INT((U-1)/MH)*MH:Y=2:X=0
590 IFX= 0THENIF0 = U%(Z)ORZZ +1 = U%

(Z)THENX=Z
600 IFU=U%(Z)THENX=Z:RETURN
610 IFY=10R0= U%(Z)THENRETURN
620 Z=Z+Y-MWINT((Z+Y-1)/MH):

Y=Y+Y-MIVINT((Y+Y-1)/MH):
GOT0590

630 IFAA= 0OREE = 0THENRETURN
ELSEO=OPENOUT(F$):PRINT# 0,MA,
ME,MH,AA,EE,CK

640 IF(CK)THENPRINT# 0,SE,FE
650 FORA%=1TOAA:X=A?A%:PRINT# 0,X,

U%(X) ,S?X,F?X,T(X) ,N(X) ,G?A%,U$(X):
NEXTA%

660 FORE%=1TOEE:X= E?E%:PRINT# 0,X,
U%(X) ,S?X,F?X,T(X) ,N(X) ,U$(X): NEXTE%

670 FORX=1TOMH:IFU%(X)=ZZ+1THEN
PRINT # 0,X

680 NEXTX:PRINT# 0,0
690 CLOSE # 0:RETURN
700 I = OPENIN(F$):INPUT#1,MA,ME,MH,

AA,EE,CK:GOSUB20
710 IF(CK)THENINPUT# I ,SE,FE
720 FORA%=1TOAA:INPUT#1,X,U%(X)

,S?X,F?X,T(X),N(X) ,G?A%,U$(X):
A?A%=X:NEXTA%

730 FORE%=1TOEE:INPUT# I,X,U%(X) ,S?X,
F?X,T(X) ,N(X) ,U$(X):E?E%=X:NEXTE%

740 INPUT#I,X:IFX>0THENU%(X) =ZZ +1:
GOT0740

750 CLOSE# I:RETURN
760 IFAA=0THEN800ELSEJM=FNP(0):CLS:

GOSUB850
770 FORA%=1TOAA:X=A?A%:GOSUB 830
780 Y=Y+1 -(LEN(U$(X))>12):IFY>20

AND(A%<AA)THENVDU3:GOSUB840:
GOSUB850

790 NEXTA%:VDU3:GOSUB840
800 IFEE=0THENRETURN ❑ ELSEDVDUJM,

10,10:GOSUB870:FORE%=1TOEE:
X= E?E%:PRINT;U%(X)TAB(10)U$(X)

810 Y=Y+1-(LEN(4(X))>12):IFY>20
AND(E%< EE)THENVDU3:GOSUB840:
GOSUB870:VDUJM

820 NEXTE%:VDU3:RETURN
830 PRINT; - FNU(S?X);TAB(6); - FNU(F?X);

TAB(12);T(X);TAB(18);N(X);TAB(23);U%
(X);TAB(28)U$(X):RETURN

840 INPUT"PRESS RETURN TO CONTINUE",

F$:CLS:RETURN
850 VDUJM:PRINT"START FINISH TIME 90%

CODE TEXT"
860 PRINT"EVENT EVENT ALLOW SURE":

Y=3:RETURN
870 PRINT"CODE111111111111111TEXT":Y = 3:

RETURN
880 CK = TRUE:FORA% = 1TOAA:X = A?A%
890 Z=S?X:IFS?Z <0ORZZ < U%(Z)THEN

PRINT;U%(X);W$(5);U%(Z):CK= FALSE
900 Z= F?X:I F(S?Z < 0ORZZ < U%(Z))TH EN

PRINT;U%(X);W$(5);U%(Z):CK = FALSE
910 NEXTA%:IF(CK= FALSE)THEN1350
920 E%=1
930 Z=E?E%:IFS?Z<0THENGOSUB560:IF

(E%< EE)THEN930
940 E%=E%+1:IF(E%< =EE)THEN930
950 FORE%=1TOEE:Z= E?E%:S?Z = 0:

F?Z=0:NEXTE%
960 FORA%=1TOAA:X=A?A%:S?(F?X) = X:

NEXTA%
970 SE =0:FORE%=1TOEE:Z= E?E%:

IFS?Z>0THEN1000
980 IFSE=0THENSE=Z:GOT01000
990 PRINTW$(1);U%(Z):IF(SE< = MH)THEN

PRINTW$(1);U%(SE):SE=MH +1
1000 NEXTE%:IFSE=0THENPRINT"ALL

EVENTS HAVE PRECEDING";A$
1010 IFSE=00R(SE>MH)THEN1350
1020 FORE%=1TOEE:Z= E?E%:T(Z) =0:N

(Z) = 0:NEXTE%:T(SE) =1
1030 LAST=1:FORC =2TOEE + 2:IF

LAST < > C -1THEN1090
1040 FORA%=1TOAA:X=A?A%:Y=S?X:IFT

(Y) < > C - 1THEN1080
1050 IF(Y = F?X)THENGOSUB1140:GOT01080
1060 IF(Y< >SE)THENY=S?Y:GOT01050
1070 Y = F?X: S?Y = S?X: F?(S?Y) = Y:

T(Y)=C: FE =Y: LAST = C
1080 NEXTA%
1090 NEXTC:PRINT"START EVENT= ";U%

(SE);",END EVENT";U%(FE):DD=INKEY
(300)

1100 FORE%=1TOEE:Y=E?E%
1110 IFF?Y=0AND(Y< >FE)THENPRINTU%

(Y);"NOT LINKED TO END EVENT":CK=
FALSE

1120 NEXTE%:IF(CK)THEN1180
1130 GOT01350
1140 CLS:PRINT"THERE IS A LOOP AS

FOLLOWS'EVENTS...":XA=A?A%
1150 X= F?XA:PRINTU%(X):Y=S?XA:

PRINTU%(Y)
1160 Y=S?Y:PRINTU%(Y):IFY< >X THEN

1210
1170 RETURN
1180 K=1:AK=AA:IFAA=1THENK=0
1190 AK = INT((AK+ K)/2):IFAK = 0THEN 1240
1200 K = 0:FORA%= AK +1TOAA:

B=A%-AK:X=A?A%:Y=A?B:XE=S?X:
YE =S?Y

1210 IFT(YE)+YE/ZZ< =XE/ZZ+T(XE)
THEN1230

1220 A?A%=Y:A?B = X:K =1
1230 NEXTA%:GOT01190
1240 N(FE)= LAST:F0RD= LAST-1TO

1STEP — 1
1250 FORA%=1T0AA:X=A?A%:IFN(F?X)

< >D+1THEN1270
1260 Y=S?X:F?Y= F?X:N(Y) = D
1270 NEXTA%:NEXTD
1280 F0RA% = 1T0AA:G?A%--- A?A%:NEXT

A%:K =1:AK = AA:IFAA = 1THENK =0
1290 AK =1NT((AK+ K)/2):IFAK =0THEN1340
1300 K= 0:F0RA%= AK +1TOAA:B =A%—

AK:X=G?A%:Y=G?B:XE= F?X:YE = F?Y
1310 IFN(YE)+YE/ZZ< =XE/ZZ+ N(XE)

THEN1330
1320 G?B =X:G?A%=Y:K =1
1330 NEXTA%:GOT01290
1340CK =TRUE:RETURN
1350 CK= FALSE:F0RX=1T01000:NEXTX:

RETURN
1360 IF AA= 0 0R EE= 0 THEN ❑ RETURN

El ELSE IF N0T(CK) THEN G0SUB880
1365 IF N0T CK THEN RETURN
1370 F0RA%= 1T0AA:X=A?A%:Z(X) =T(X):

NEXTA%:G0SU B1440
1380 F0RA%=1T0AA:X=A?A%:Y(X)= — (Z

(F?X)—Y(S?X)=Z(X))*100:NEXTA%
1390 F0RB=1TO(AA)STEP5:CLS:

F0RA%= (B)T0 FNA(B+4,AA):X=A?A%
1400 PRINTA$;"111";U%(X);"=";U$(X)
1410 C=Y(S?X):D=Z(F?X):PRINT"ABLE TO

STARTIII";INT(C*100)/100;" ❑ MUST
FINISH ❑ ";INT(D*100)/100

1420 PRINT"SLACK ❑ ";INT((D — C — Z(X))*
100)/100;"CRITICALIE";Y(X);"%":
IFT = 9THENPRINT"STD DEVN =";INT
(Q(X)100)/100

1430 PRINT:NEXTA%:G0SUB840:NEXTB:
RETURN

1440 F0RE%=1T0EE:Y(E?E%)=0:NEXTE%
1450 F0RA%= 1T0AA:X=A?A%:Y(F?X) =

FNZ(Y(F?X) ,Y(S?X) +Z(X)):NEXTA%
1460 F0RE%=1T0EE:Z(E?E%)=Y(FE):

N EXTE%: F0RA% = (AA)TO1STEP —1:
X = G?A%

1470 Z(S?X) = FNA(Z(S?X), Z(F?X) —Z(X)):
NEXTA%:RETURN

1480 IF N0T(CK)THEN G0SUB880
1485 IF N0T CK THEN RETURN
1490 F0RA%=1T0AA:X=A?A%:P(X)= 0:0

(X) = 0:Y(X) = 0:NEXTA%
1500 F0RE%=1T0EE:Z= E?E%:P(Z)= 0:Q

(Z) = 0:NEXTE%
1510 F0RM = 1T043STEP3:F0RA% = 1T0

AA:W(A%) = 2 * 13ND(1) — 1:NEXTA%
1520 F0RN = 0T04STEP2:CLS:PRINT

"STARTING CASE ❑ ";M + N/2;" E 0F 45"
1530 F0RA%= 1T0AA:X = A?A%:TX = T(X):

I FTX = OTHENZ(X) = 0:G0T01580

1540 NX= N(X):IF(NX =TX)THENZ(X) =TX:
GOT01580

1550 W = FNW(W(A%) + N/3):IFNX> = TX*3
THENZ(X) = — NX*(W <TX/NX):GOTO 1580

1560 IFNX>TX*2.34THENZ(X) = —TX*LOG
(W):GOT01580

1570 W= FNX(W—.5):Z(X) = ABS(TX + W *
 (NX — TX))

1580 NEXTA%
1590 GOSUB1440
1600 FORA%=1TOAA:X=A?A%:Z=Z

(F?X)—Y(S?X)—Z(X)
1610 P(X)=P(X)+Z:Q(X)=Q(X)+Z * Z:Y(X)

= Y(X) + (Z <1E — 6):NEXTA%
1620 FORE%=1TOEE:Z=E?E%:P(Z)=P(Z)

+Y(Z):Q(Z)=Q(Z)+Z(Z):NEXTE%:
NEXTN:NEXTM

1630 F0RE%=1TOEE:Z= E?E%:Y(Z) =VAL
(LEFT$(STR$(P(Z)/45) ,6))

1640 Z(Z)=VAL(LEFT$(STR$(Q(Z)/45) ,6)):
NEXTE%

1650 F0RA%=1T0AA:X=A?A%:Y=Y(X):Y
(X) = — VAL(LEFT$(STR$(Y/ 45*100) ,4))

1660 IFP(X) <1.E —2THENP(X)= 0
1670 Z = (45 —Y) + .1E —9:Z(X) = Z(F?X) —Y

(S?X)—VAL(LEFT$(STR$(P(X)/Z),6))
1680 Q(X)=SQR(ABS((Q(X)—P(X)*P(X)/Z)/

((Z — 1) + .1E — 9))):IFQ(X) <1.E — 6THEN
Q(X)= 0

1690 NEXTA%:GOT01390
1700 DEFFNA(X,Y)= (X + Y — ABS(X —Y))/2
1710 DEFFNZ(X,Y) = (X + Y + ABS(X — Y))/2
1720 DEFFNW(X)= — ABS(X)*(X <1) —ABS

(2 — X)*(X >1)
1730 DEFFNX(X)=X*(2.37572+X*X*

(15.9402 — X*X*(184.744 — VX*688.472
)))/1.20667

1740 DEFFNU(X)= —U%(ABS(X *
(X< = MH))—(X=0ORX> MH))*(X> 0
AN DX < M H)

1750 DEFFNP(JM):PRINT'"DO YOU WANT A
PRINT0UT(Y/N)?";:REPEATJM = GET:
UNTILINSTR("YyNn",CHR$(JM)): = 3 +
(JM=890RJM =121)

590 IFF$ < >A$THEN680
600 FORB=1T0AA:IFX=A(B)THENA=B
610 NEXTB:A(A) = A(AA):U(X) =ZZ +1:

AA=AA-1:RETURN
620 IFU(X) <0GOSUB1050:PRINTUSING

"# # # # # ❑ ❑ ";ABS(U(X));:PRINT
U$(X):G0T0650

630 IFEE= ME THENPRINTW$(2);F$:RETURN
640 G0SUB660
650 PRINTW$(4);F$:INPUTU$(X):S(X) = 0:

RETURN
660 EE=EE+1:E(EE)=X:S(X)= —1:

F(X) = 0:U(X) = U
670 T(X) = 0:N(X) = 0:U$(X)="":RETURN
680 Z=X:F0RF=1T0EE:IFE(F)=Z THEN E=F

690 NEXTF:E(E)=E(EE):U(Z)=ZZ+1:EE=
EE-1:RETURN

700 Z=U—INT((U-1)/MH)*MH:Y=2:X=0
710 IFX= 0AND(0= U(Z)ORZZ + 1 = U(Z))

THENX= Z
720 IFU=U(Z)THENX=Z:RETURN
730 IFY =10130 = U(Z)THENRETURN
740 Z=Z+Y—MH*INT((Z+Y-1)/MH):

Y=Y+Y—MH*INT((Y+Y-1)/MH):
GOT0710

750 OPEN"0",# —1,F$:PRINT# —1,MA;
ME;MH;AA;EE;CK

760 IFCK THENPRINT# —1,SE;FE
770 FORA =1TOAA:X =A(A):PRINT# —1,X;

U(X);S(X);F(X);T(X);N(X);G(A);U$(X): NEXTA
780 FORE=1TOEE:Z=E(E):PRINT# —1,Z;

U(Z);S(Z);F(Z);T(Z);N(Z);U$(4NEXTE
790 FORX=1TOMH:IFU(X)=ZZ+1THEN

PRINT# —1,X
800 NEXTX:PRINT# —1,0
810 CLOSE # —1:MOTORON:FORX =1TO

100:NEXTX:MOTOROFF:RETURN
820 CLS:PRINT"ERROR TRYING TO SAVE

DATA":FORK=1T01000:NEXT:RETURN
830 OPEN"I",# —1,F$:1NPUT# —1,MA,

ME,MH,AA,EE,CK:GOSUB20
840 IFCK THENINPUT# —1,SE,FE
850 FORA=1TOAA:INPUT# —1,X,U(X),

S(X),F(X),T(X),N(X),G(A),U$(X):A(A) = X:
NEXTA

860 FORE= 1TOEE:INPUT# —1,Z,U(Z),S(Z),
F(Z),T(Z),N(Z),U$(Z):E(E) =Z:NEXTE

870 INPUT# —1,X:IFX>0THEN
U(X)=ZZ+1:GOT0870

880 CLOSE# —1:RETURN
890 GOSUB1870:A=0:GOSUB1030
900 FORA =1TOAA:X =A(A):GOSUB1000
910 Y=Y+1:IFY>8ANDA<AA GOSUB

1020:GOSUB1030
920 NEXTA:GOSUB1020
930 E=0:GOSUB1050:FORE=1TOEE:

X= E(E):PRINT# PR,USING"# # # #
111";ABS(U(X));:PRINT#PR,U$(X)

940 Y=Y+1:IFY>15ANDE<EE GOSUB
1020:GOSUB1050

950 NEXTE:GOT01020
960 CLS:PRINT" ARE YOU SURE (YIN) ?"
970 T$ =INKEY$:IFT$ < >"Y"ANDT$ < >

"N"THEN970
980 IFT$="N"THENRETURN
990 CLS:END
1000 PRINT#PR,USING"# # # # # ❑ #

❑ ##### ❑ ####
#";FNU(S(X)),FNU
(F(X)),T(X),N(X),ABS(U(X));:IFPR =0
THENPRINT

1010 PRINT # PR," D";U$(X):RETURN
1020 IFPR=0THENPRINT"PRESS ENTER TO

CONTINUE":1NPUTF$:CLS:RETURNELSE
RETURN

1030 CLS:IFPR = 0ORA=0THENPRINT# PR,

"START FINISH TIMED ❑ ❑ 90%
ACTIVITY":Y = 3

1040 RETURN
1050 CLS:IFPR =00RE=0THENPRINT# PR,

"0 E EVENTE ETEXT":Y = 3
1060 RETURN
1070 CK = TR:FORA = 1TOAA:X = A(A)
1080 Z=S(X):IFS(Z) <0ORZZ <U(Z)THEN

PRINTA$;U(X);W$(5);U(Z):CK= FA
1090 Z= F(X):IFS(Z) <0ORZZ < U(Z)THEN

PRINTA$;U(X);W$(5);U(Z):CK= FA
1100 NEXTA:IFCK= FA THEN1540
1110 E=1
1120 Z= E(E):IFS(Z) <0GOSUB680:IF

E< =EE THEN1120
1130 E=E+1:IFE< =EE THEN1120
1140 FORE =1TOEE:Z = E(E):S(Z) = 0:

F(Z) = 0:NEXTE
1150 FORA =1TOAA:X = A(A):S(F(X)) =X:

NEXTA
1160 SE =- 0:FORE = 1TOEE:Z = E(E):IF

S(Z) > 0THEN1190
1170 IFSE=0THENSE=Z:GOT01190
1180 PRINTW$(1);U(Z):IFSE< = MH THEN

PRINTW$(1);U(SE):SE= MH +1
1190 NEXTE:IFSE=0THENPRINT"ALL

EVENTS HAVE PRECEDING";A$
1200 IFSE=0ORSE>MH THEN1540
1210 FORE =1TOEE:Z = E(E):T(Z) = 0:

N(Z) =0:NEXTE:T(SE) =1
1220 LA =1:FORC = 2TOEE + 2:IF

LA< >C-1THEN1280
1230 FORA = 1TOAA:X = A(A):Y =S(X):IF

T(Y) < > C — 1THEN1270
1240 IFY= F(X)GOSUB1330:GOT01270
1250 IFY< >SE THENY=S(Y):GOT01240
1260 Y= F(X):S(Y)=S(X):F(S(Y))=Y:

T(Y) = C:FE=Y:LA= C
1270 NEXTA
1280 NEXTC:PRINT"START EVENT ";U(SE);

", END EVENT ";U(FE)
1290 FORE =1TOEE:Y = E(E)
1300 IFF(Y)= °ANDY< >FE THENPRINT U(Y)

;"NOT LINKED TO END EVENT": CK = FA
1310 NEXTE:IFCK THEN1370
1320 GOT01540
1330 CLS:CK= FA:PRINT"THERE IS A LOOP

AS FOLLOWS":PRINT"EVENTS 	":
XA=A(A)

1340 X= F(XA):PRINTU(X):Y = S(XA):PRINT
U(Y)

1350 Y=S(Y):PRINTU(Y):IFY< >X THEN
1350

1360 FORX=1T01000:NEXT:RETURN
1370 K =1:AK = AA:IFAA = 1THENK = 0
1380 AK = INT((AK + K)/2):IFAK =0THEN 1430
1390 K 0:FORA = AK + 1TOAA:B = A — AK:

X = A(A):Y = A(B):XE = S(X):YE = S(Y)
1400 IFT(YE)+YE/ZZ< =XE/ZZ+T(XE)

THEN1420
1410 A(A) =Y:A(B) = X:K =1

1420 NEXTA:GOT01380
1430 N (FE) = LA:F0RD = LA — 1TO1STEP —1
1440 FORA =1TOAA:X = A(A):IFN(F(X)) < >

D+1THEN1460
1450 Y=S(X):F(Y)=F(X):N(Y)=D
1460 NEXTA:NEXTD
1470 FORA =1TOAA:G(A) =A(A):NEXTA:

K =1:AK =AA:IFAA=1THENK = 0
1480 AK = INT((AK + K)/2):IFAK =0THEN

1530
1490 K= 0:F0RA = AK +1TOAA:B =A— AK:

X= G(A):Y= G(B):XE= F(X):YE= F(Y)
1500 IFN(YE)+YE/ZZ< =XE/ZZ+ N(XE)

THEN1520
1510 G(B) = X:G(A) =Y:K =1
1520 NEXTA:GOT01480
1530 CK =TR:RETURN
1540 CK = FA:FORX = 1T01000:NEXTX:

RETURN
1550 GOSUB1870:FORA=1TOAA:X=A(A):

Z(X) =T(X):NEXTA:GOSUB1620
1560 FORA =1TOAA:X = A(A):Y(X) =

— (Z(F(X)) —Y(S(X)) =Z(X))100:NEXTA
1570 FORB=1TOAA STEP3:CLS:FOR A= BE

TOAA + FNA(B + 2 — AA): X = A(A)
1580 PRINT # PR,A$;U(X);"=";U$(X)
1590 C=Y(S(X)):D=Z(F(X)):PRINT# PR,

"CAN START";C;"MUST END";D
1600 PRINT# PR,"SLACK";INT(100 *

(D — C — Z(X)))/100;"(CRITICAL";Y(X);
"%)":IFT= 9THENPRINT# PR,USING
"STD DEVN = # # # # .# #";Q(X)

1610 PRINT# PR:NEXTA:GOSUB1020:NEXTB:
RETURN

1620 FORE =1TOEE:Y(E(E)) = 0:NEXTE
1630 FORA =1TOAA:X = A(A):Y(F(X)) =

Y(F(X)) + FNZ(Y(S(X))—Y(F(X))+Z(X)):
NEXTA

1640 FORE =1TOEE:Z(E(E)) =Y(FE):NEXTE:
FORA = AA TO1STEP —1:X = G (A)

1650 Z(S(X)) =Z(S(X)) + FNA(Z(F(X)) —
 Z(S(X)) —Z(X)):NEXTA:RETURN

1660 GOSU B1870: FORA = 1TOAA:X = A(A):
P(X) = 0:Q(X) = 0:Y(X) = 0:NEXTA

1670 FORE =1TOEE:Z = E(E):P(Z) = 0:
Q(Z) =0:NEXTE

1680 FORM =- 1T043STEP3: FORA = 1TOAA:
W(A) = 2*RND(0) — 1:NEXTA

1690 FORN=0TO4STEP2:CLS:PRINT
"STARTING CASE";M + N/2;" 0F 45"

1700 FORA =1TOAA:X = A(A):TX = T(X):IF
TX= 0THENZ(X) = 0:GOT01750

1710 NX= N(X):IFNX = TX THENZ(X) =TX:
GOT01750

1720 W= FNW(W(A)+ N/3):IFNX> =TX*3
THENZ(X) = — NX*(W<TX/NX):GOTO
1750

1730 IFNX>TX*2.34THENZ(X)= —TX * L0G
(W):GOT01750

1740 W= FNX(W — .5):Z(X) = ABS(TX + W*
(NX — TX))

1750 NEXTA
1760 G0SUB1620
1770 FORA =1TOAA:X = A(A):Z =Z(F(X)) —

Y(S(X!) —Z(X)
1780 P(X) = P(X) + Z:Q(X) = Q(X) +Z*Z:

Y(X) = Y(X) + (Z < 1E — 6):NEXTA
1790 FORE -= 1TOEE:Z = E(E):P(Z) = P(Z) +

Y(Z):Q(Z)=Q(Z)+Z(Z):
NEXTE,N,M

1800 F0RE =1TOEE:Z = E(E):Y(Z) = VAL
(LEFT$(STR$(P(Z)/45),6))

1810 Z(Z)=VAL(LEFT$(STR$(Q(Z)/45),6)):
NEXTE

1820 FORA =1TOAA:X = A(A):Y = Y(X):
Y(X) = —VAL(LEFT$(STR$(Y/45 * 100),4))

1830 IFP(X) <1E — 2THENP(X) =0
1840 Z =45— Y + .1E — 9:Z(X) =Z(F(X)) —

Y(S(X)) —VAL(LEFT$(STR$(P(X)/Z),6))
1850 Q(X) = SQR(ABS((Q(X) — P(X) * P(X)/Z)/

((Z — 1) + .1E — 9))):IFQ(X) < 1.E — 6THEN
Q(X) = 0

1860 NEXTA:G0T01570
1870 IF(PEEK(65314)AND1)=1THENRETURN

ELSECLS:PRINT"SEND TO PRINTER OR
SCREEN (P/S)?' ,

1880 Q$ = INKEY$:IFQ$ < >"P"ANDQ$
< > "S"THEN1880

1890 IFQ$ = "P"THENPR = —2
1900 CLS:RETURN

Dragon users with a Dragon Data disk drive
should make these changes:

750 ERR0R G0T0820:CREATE F$:
FWRITE F$;MA;E$;ME;E$;MH;E$;
AA;E$;EE;E$;CK

760 IFCK THENFWRITEF$;SE;E$;FE
770 FORA =1T0AA:X = A(A):FWRITEF$;X;E$;

U(X);E$;S(X);E$;F(X);E$;T(X);E$;N(X);E$;
G(A);E$;U$(X):NEXTA

780 F0RE =1T0EE:Z = E(E):FWRITEF$;Z;E$;
U(Z);E$;S(Z);E$;F(Z);E$;T(Z);E$;N(Z);E$;
U$(Z):NEXTE

790 FORX=1T0MH:IFU(X)=ZZ+1THEN
FWRITEF$;X

800 NEXTX:FWRITEF$;0
810 CLOSE:RETURN
820 CLS:PRINT"ERR0R TRYING T0 SAVE

DATA": F0R K = 1T01000:NEXT:
RETURN

830 FREADF$,FROM0;MA,ME,MH,AA,EE,CK:
G0SUB20

840 IFCK THENFREADF$;SE,FE
850 F0RA = 1T0AA:FREADF$;X,U(X),S(X),

F(X),T(X),N(X),G(A),U$(X):A(A) = X:
NEXTA

860 F0RE =1T0EE:FREADF$;Z,U(Z),S(Z),
F(Z),T(Z),N(Z),U$(Z):E(E)=Z:
NEXTE

870 FREADF$;X:IFX> 0THENU(X) = ZZ +1:
G0T0870

880 CL0SE:RETURN

If you get eyestrain when you're
fiddling with your hardware, you
could be due for a change of
monitor* This test program sorts the
flicker from the fuzz

Until quite recently the price of a monitor has
been well outside the pocket of most home
computer owners and, in general, people have
had to make do with the family TV set. But
the ordinary TV has several limitations, and if
you have been using one for some time you
are probably only too well aware of them. The
picture on a TV set is continuously flickering
and juddering, and this can cause eye strain
and headaches if you have to look at it for long
periods—if you are doing any wordprocess-
ing, for instance. Also, the resolution is
usually quite low which means detail is lost in
graphics and games. And, of course, the TV is
often hijacked by the rest of the family who
want to watch the news or a film.

But now that the price of monitors has
started to fall, and good quality combined
TV/monitors have been introduced, you may
be considering buying a set to use specifically
with your computer. The question is, how do
you choose which to buy?

The article on page 445 should help you
make your choice as it describes the dif-
ferences between a TV and a monitor and
explains such technical terms as bandwidth,
signal types and so on. But in the end, after
you've sorted out all the technical details, the
important point is what the picture looks like
to you, when connected up to your computer.
It is essential to use your own computer in
these tests since not all TVs and monitors are
compatible with all computers, and even
computers of the same make can produce
quite different results. So take your computer
to the shop and test the complete system.

The test card program given below is
designed to help you assess different systems.
It is not an absolute test but it does give you a
fairly objective way of comparing several TVs
or monitors—and it is short enough to type in
in the shop.

A SCREEN TEST
The Spectrum, Commodore and Vic
programs print a single, combined test card,
while the Acorn, Dragon and Tandy
programs use several routines to test different
modes. Here are the points to look out for.

First check whether the picture is centred
in the screen. This is most critical on the

Acorns as the computer doesn't leave a border
round the picture and some text may be lost.
Also on the Acorns check if the characters in
the corners are legible—or, indeed, if any
characters are legible.

Now have a look at the rectangles or the
edge of the test card. On most sets the lines
near the edge of the screen bulge outwards.

Are all of the lines clearly visible, or do
they merge together? This is a good test of the
resolution. On most colour TVs and monitors
the resolution is better in one direction than
the other due to the way the coloured phos-
phor dots are arranged on the screen, but
some monitors use a different arrangement of
dots and give a clearer picture.

If the program draws circles are they really
circular or are they oval?

Now check the colour. The edges of the
coloured squares should be sharp, not fuzzy,
and the colours shouldn't run into each other.
The coloured text on the different coloured
background should be clearly readable. (On
some sets, with some colour combinations, it
may be completely illegible.) The density of
the colour may vary, too, from set to set so try
to decide which you prefer.

Lastly, check the whiteness of the lines or
text to see if there's any colour fringing.

Of course, the final deciding point may be
the cost, but at least you'll be in a position to
choose the best in your price range.

a
5 FOR p =- 0 TO 7: FOR i = 0 TO 7: IF p=i

THEN GOTO 200
6 PAPER p: INK i: BORDER 0: CLS
10 FOR n=0 TO 12 STEP 2: PLOT n,n: DRAW

0,175-2*n: DRAW 255-2*n,0: DRAW
0, — (175 — rn): DRAW — (255 — 2*n),0:
NEXT n

20 FOR n=10 TO 20 STEP 2: CIRCLE INK
1;128,85,n: NEXT n

30 FOR n=5 TO 7: PRINT INK i;AT n,8;"";AT
n+10,8;": NEXT n

40 PRINT AT 4,8;: FOR m=0 TO 1: FOR
n=0 TO 7: PRINT PAPER n;" ❑ ";: NEXT
n: NEXT m

50 PRINT AT 18,8;: FOR m=0 TO 1: FOR
n=0 TO 7: PRINT PAPER n;" ❑ ";: NEXT
n: NEXT m

55 PRINT AT 2,4;: FOR n=0 TO 2: FOR
m=0 TO 7: PRINT INK m; PAPER p;CHR$
(64+ n*7 + m);: NEXT m: NEXT n

57 PRINT AT 19,4;: FOR n=0 TO 2: FOR
m=0 TO 7: PRINT BRIGHT 1; INK m;
PAPER p; CHR$ (64+ n*7 +m);: NEXT m:
NEXT n

60 FOR n=0 TO 7: BORDER n: PAUSE 50:
NEXT n: PAUSE 50

200 NEXT i: NEXT p

10 PRINT "0":Z$ = 	kil":ZZ$=
"LICIDOOMEIMCIOCIDEOEREE
11111161=141=1"

20 X= 1040:X1 =1944:X2 =1904:FOR Z=0
TO 15:X=X-1:XX=X

30 FOR ZZ=0 TO Z:POKE XX,160:POKE
54272+ XX,Z:XX= XX +41:NEXT ZZ

35 POKE 646,Z:PRINT SPC(16)"a"ZZ$;:Z$
=Z$+"gg"

40 FOR Z1 =0 TO 4:POKE X1,160...POKE
54272 + X1,Z:POKE X2,102:POKE
54272 + X2,Z

50 X1 =X1 +1:X2 =X2 + .5:NEXT Z1,Z
so As=" ❑❑ gpipl ❑ ggim ❑ gg

1111 ❑❑❑ X0111111 ❑ PJPJ ❑
g9111111="

70 Bs=" ❑❑ apjaj ❑ ggim ❑❑
g0111111111PJEMIIIIIED
❑❑1111111 ❑ "

75 PRINT Z$"galigggg":FOR Z=0 TO
39:POKE 646,Z:PRINT "a 0";:NEXT Z

80 FOR Z=0 TO 15:POKE 646,Z:PRINT ZA
Z$SPC(6) B$

85 PRINT "121"SPC(16)ZZ$
90 GET K$:IF K$="j" THEN Cl =C1+1
100 IF K$="M" THEN C2= C2+1
110 Cl =C1 AND 15:C2= C2 AND 15:POKE

53280,C1:POKE 53281,C2
120 NEXT Z:GOTO 80

10 PRINT "0":2$="1§111":ZZ$="El
VOIDCED2000":C1 =44

20 X = 7690:X1 =8010:X2=7988:FOR Z = 0
TO 7:X= X — 1:XX = X

30 FOR ZZ=0 TO Z:POKE XX,160:POKE
30720 +XX,Z:XX= XX + 23:N EXT ZZ

35 POKE 646,Z:PRINT SPC(10)"a"ZZ$;:Z$
=Z$+"gg"

Test cards for each computer*
Clockwise from the top, Spectrum,
Acorn, Dragon and Commodore

40 F0R Z1 =0 T0 21:P0KE X1,160:P0KE
30720 + X1,Z:P0KE X2,102: P0KE 30720
+X2,Z

50 X1 =X1 +1:X2 = X2 + .12:NEXT Z1,Z
60 A$="0 ❑ ail n gm' E pi LI

!HIE glIllg11111DMIE
E n"

70 B$=" ❑❑ aPi ❑ g1111 ❑ 11 ❑

75 PRINT zs"gfigggggy:FoR Z=0 TO
21:P0KE 646,Z AND 7:PRINT "a ir ,

NEXT Z
80 F0R Z=0 T0 7:P0KE 646,Z:PRINT ZA

Z$SPC(4)B$
85 PRINT "§"SPC(10)ZZ$
90 GET K$:IF K$="g" THEN Cl =C1 +1
110 C1= 01 AND 255:P0KE 36879,C1
120 NEXT Z:G0T0 80

10 M0DE0
20 F0R T=1 T0 1000:VDU RND(96)+ 31:

NEXT
30 D=GET:CLS: S=2
40 F0R T=0 T0 520 STEP S
50 M0VET,T:DRAW1276 -T,T:DRAW1276 - T,

1023 — T:DRAWT,1023 — T:DRAWT,T
60 T = T+ (TO DIV 50):NEXT
100 D = GET
110 F0R 0=0 TO 7:MODE2:GCOL0,128+Q:

CLG:COLOUR128 + Q
120 Y=824
130 FOR T=1 T02
140 X=640-4*32
150 F0R C=0 TO 7
160 GC0L0,C
170 PROCB
180 X=X+32
190 NEXT
200 Y=168
210 NEXT
220 VDU 29,640;512;
230 W=0
240 F0R R=32 TO 256 STEP 32
250 GC0L0,W:W =W +1
260 PR0CC
270 NEXT
280 FOR T=0 TO 7
290 C0L0URT
300 PRINTTAB(0,T+11)"ABCDE"TAB(15,

T+ 11)"ABCDE"
310 NEXT
320 D=INKEY(300):NEXT
330 END
340 DEF PROCB
350 M0VEX,Y:MOVEX+32,Y:PLOT85,X,

Y + 32:PLOT85,X + 32,Y + 32
360 ENDPROC
370 DEF PROCC
380 LOCALT
390 MOVE COS(PI*2+.15)*R,0
400 FORT= —.1 TO PI * 2 + .15 STEP .15
410 DRAW COS(T) * R,SIN(T)11
420 NEXT: ENDPROC

10 PMODE4,1:PCLS:SCREEN1,1
20 FORK = 0T01:FORJ =0T015 STEPK + 2
30 LINE(K*16+J,K16+J)—(255

16—J,191 — K*1 6 —J),PSET,B
40 NEXTJ,K
50 FORK =100T0154 STEP2:LINE(K,85)

— (K,105),PSET:LINE(113,K-32) — (141,
K — 32),PSET:NEXT

60 FORK= 1T0100 STEP 10:CIRCLE(127,95),
K,5:NEXT

70 IFINKEY$="" THEN70
80 PMODE1,1:PCLS:SCREEN1,0
90 FORJ= 070191 STEP48:COLORJ/48 +1
100 LINE(0,J) — (255,J +47),PSET,BF:NEXT
110 FORJ = 010255 STEP63:FORK = 0T063

STEP4:COLORJ/63 +1
120 LINE(K + J,0) — (K +J,191),PSET
130 NEXTK,J
140 IFINKEY$=`"' THEN140
150 S=1 —S:SCREEN1,S:GOT0140

Not everything that happens to
Willie is bad* Sometimes—with your
able assistance—he wins through to
his reward, retrieves his picnic and
clocks up more score

All sorts of things have happened to Willie.
He has fallen down holes, been bitten by
snakes, hit by boulders and drowned by the
sea. And in the last part of Cliffhanger Willie
was killed and buried and sent down to
Hades.

But now it is time for Willie to get his
reward* Here he finally reaches his goal,
manages to retrieve an item of his picnic and
increment his score*

This first little routine sounds the reward
bell, puts Willie up onto the next level, speeds
the game up and gives him a massive boost to
his score.

org 59788
rwd Id de,523

Id h1,806
call 949
Id a,(57344)
inc a
res 2,a
Id (57344),a

The first three instructions sound the reward
bell* This is done using the BEEPER routine, at
949 in the Spectrum's ROM, and the pitch
and duration parameters are fed to it in the
usual way, via the DE and the HL register
pairs.

ON THE LEVEL
The level number is then loaded from its
storage location at 57,334 into the ac-
cumulator. The contents of the accumulator
are then incremented.

But there are only four levels in the game,
so you don't want the level number to get any
bigger than 3. This is prevented by using the
res 2,a instruction which resets bit 2 of the
accumulator. When level number 3 is in-
cremented to 4, bit 2 is set. Resetting it
returns the level number to 0 and puts the
game back on level one.

The result of these operations is stored by
57,334 when it can be referred to when setting
up the game.

ABOUT SPEED
The delay at 58,732 is then reduced by one.
Its value is loaded into the accumulator,
decremented and stored back in 58,732. This
speeds the game up as the processor does not
pause so long in the main routine.

It is originally set to 50, so as long as Willie
does not reach the reward more than fifty
times the game will go on getting faster and
faster. This makes the game more and more
difficult. Even though you will be performing
the same four levels over and over again, each
time they will get faster.

PICKING UP POINTS
For reaching the reward, Willie picks up an
extra 500 points. This is done by calling the
score routine at 59,900 and feeding para-
meters to it in the A and B registers.

The 2 loaded into A specifies that it is the
digit in the second column from the left—the
hundreds—is to be incremented. And the 5 in
B tells the routine how many times to incre-
ment that digit. Incrementing the hundreds
five times increases the score by 500.

The processor then jumps back to the 'new
life routine'—labelled nlv—at 58,601 and
starts Willie off again at the bottom of the
slope.

SCORING
The next little routine keeps track of Willie's
score and increments it when he reaches a
reward or scales another part of the cliff.

org 59900
scn Id ix,57337

Id d,0
Id e,a
add ix,de

scr push ix
call sdi
pop ix
djnz scr
call 58939

Id a,(58732)
dec a
Id (58732),a
Id a,2
Id b,5
call 59900
jp 58601

ret
sdi Id a,(ix + 0)

inc a
cp 10
jr nz,sno
Id a,0
Id (ix + 0),a
dec ix
jr sdi

sno Id (ix+0),a
ret

MOVING UP A LEVEL
SPEEDING UP THE GAME

ADDING SCORE
FINDING YOUR PLACE

DEALING WITH CARRIES

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

Memory location 57,337 is the start of the
score variable which is loaded with zeros in
the initialization routine on page 1101. D is
set with zero and E is loaded with the contents
of the accumulator. Remember, the ac-
cumulator carries the column number when
the processor enters this routine.

The contents of DE are then added to those
of IX and the result is left in IX. This
effectively moves the data pointer along the
digits, which are stored in 57,337 onwards,
until it gets to the one specified by the
contents of A. This position is stored tem-
porarily by pushing the contents of IX onto
the stack. The sdi routine is then called.

DEALING WITH DIGITS
The sdi routine is the one
that actually deals with the digits. It starts
off loading the accumulator with the
digit pointed to by IX. The offset is
required here because of the ,

format of the instruction.
The digit is then incremented and

compared to 10. If it has reached 10, you
will have to increment the next digit too. So
on a non-zero result—in other words,
the first digit hasn't been incremented to
10 yet—the jr nz instruction sends the
processor forward to the sno label where the
incremented digit is stored

back in the location it was taken from.
If the digit you're dealing with has been

incremented up to 10, the jump does not
occur and the processor continues with the
next instruction. Zero is then loaded into 0
and stored back in the appropriate digit. Then
IX is decremented so that it points to the next
digit to the left. The jr sdi then sends the
processor back to sdi to start the
incrementing routine all over again,
on the next digit.

If the next digit then increments
to 10 you go round the loop again.
And so on. But sooner or later,
one digit will not overflow,

the processor will get to sno, store the last
digit and return to the place in the scr routine
where sdi was called.

MORE SCORE
After the processor returns, the IX pointer is
popped off the stack again. You can now see
why it was stored there. If the digit had been
incremented to 10, the sdi would have shifted
this pointer onto the next digit. And if you
wanted the increment again, you'd be doing it
to the wrong digit.

The loop here is closed by a djnz, which
decrements the contents of the B register and
jumps if it hasn't been decremented down to
zero. B, you'll remember, carried the number
of times the score digit had to be incremented
when the processor entered the routine.

So the processor goes round this loop,
clocking up the score, the number of times B
carries to start with. And when it has counted
down to zero, the score-printing routine at
58,939 is called which prints up the new score
on the screen.

That done, the processor returns.

The following little routine increments the
score by one point:

exactly the same way. If it isn't a figure
nine, the digit is incremented. If it is, a
figure zero is stored in that location
on the screen and the processor goes
back to increment the next digit.

1E1
The following routine works out
the score to base ten, so that it can
be printed on the screen, and updates the
score each time Nplie‘carps an extra point.

Remember to (et up the computer as
usual before you
start keying f
it in.

ORG 26624
LDX # 5

NEXT LDA $047E,X
CM P #57
BEQ ZERO

INC $047E,X
R ET RTS

ZERO LDA # 48
STA $047E,X
DEX
JMP NEXT

The score on the screen is five digits long, so
the index register, X, is loaded with 5. The
contents of X are then used as an offset in the
indexed instruction LDA $047E,X. This loads
up the digit pointed to by 1150 plus X on the
screen. On entering this routine X is 5 so the
units' digit is loaded up from $047E.

This is compared to 57, the ASCII for the
figure nine. If it is a nine, adding 1 to the score
will cause an overflow so the BEQ instruction
branches the processor forward. If not, the
contents of $047E plus X are incremented
and the processor returns.

DOUBLE DIGITS
If there is going to be an overflow and the next
digit to the left needs to be incremented too,
the processor loads A with 48. This is the
ASCII for a figure zero. The 48 is stored back
in $047E plus X on the screen, giving a 0 in
that position.

Then X is decremented which moves it
effectively one place to the left. And the
processor jumps back to the label NEXT.

There it begins to handle the next digit in

30 FORPASS=
0TO3STEP3

40 P%= &212E
50 [OPTPASS
60 .Score
70 LDX # 6
80 .Lb1
90 LDA&89,X
100 CMP#10
110 BCCLb2
120 SEC
130 SBC#10
140 STA&89,X
150 INC&88,X
160 .Lb2
170 DEX
180 BNELb1

190 RTS
200 .Incsc
210 LDA&7E
220 CMP&7B
230 BCCLb3
240 RTS
250 .Lb3
260 LDA&8F
270 CLC
280 ADC# 7
290 STA&8F
300 JSRScore
310 LDA#17
320 JSR&FFEE
330 LDA # 128
340 JSR&FFEE

550 INC&89
560 .Lb5
570 LDA&7D
580 ORA # &80
590 STA&7D
600 LDA # 15
610 LDX#0
620 JSR&FFF4
630 JSR&14E7
640 LDA&84
650 CMP#0
660 BEQLb6
670 CLC
680 SBC # 2
690 STA&84
700 .Lb6
710 RTS
720]NEXT
730 ?&1 D65 = ?&1D62
740 ?&1D90 = ?&1D8D

To test this routine set PAGE = &2500 type
NEW and then, key in the following program
and RUN it when you have all the other
routines in memory.

+?&83)AND4
CALM E1D

110 CALL&1 FD5
115 IF(?&7CDAND4)

= KAUAI EB6
120 CALL&20C9
130 CALL&2103
140 UNTIL?&7

D 0 AN D128
150 IF?&89= 0

REPEATUNTIL
INKEY(—99):
RUN ELSEGOT040

LOADING BASE TEN
The score that is printed on the screen is in
base ten and has six digits so that it can record
any number from zero to 999,999. Although
the numbers between zero to 999,999 can be
stored in only three bytes ordinarily, they are
going to be stored in six bytes here—with one
decimal digit in each byte—so that they can be
printed up on the screen more easily.

So first X is loaded with 6 so that you can
count across the six memory locations that are
going to be used. These are zero page loc-
ations &8A to &8F. Then A is loaded with the
contents of memory location &89 offset by X.
In other words, you're going to start at &8F
which is the least significant digit. The
contents of this memory location are com-
pared with 10.

If the contents of this location have not
been incremented up to 10 yet, the BCC
instruction branches the processor forward
over the next routine. But if the contents are

10 or larger, the processor continues. Obvi-
ously, in base ten notation, you cannot have a
number larger than 9 occupying a digit.

CLOCKING ON
If the number in one digit location is 10 or
over, you have to clock up one in the next
digit to the left. But first you need to adjust
the contents of the original digit byte.

So the carry flag is set in Line 120 and 10 is
subtracted in Line 130. The result is then
stored back in the memory location given by
&89 offset by X—which was the one it was
loaded up from. The next digit to the left—
given by &88 offset by X—is incremented.

The DEX in Line 170 decrements X to
move onto the next digit. Then the BNE
instruction in Line 180 branches the pro-
cessor back to handle the next digit, if X
hasn't counted down to zero.

If it has clocked down to zero, all the digits
have been dealt with, the processor proceeds,
hits the RTS and returns.

WILLIE THE WINNER
Location &7E contains the Y coordinate
Willie has just moved from. So this is loaded
into the accumulator and compared with the
contents of &7B, the Y coordinate Willie has
just moved to.

If Willie has not moved up the slope, the
BCC instructor does not operate and the
processor hits the RTS and returns. But if
Willie has moved up the screen, the BCC
branches the processor into the next part of
the routine.

There, the contents of &8F—which carries
the 1s—is loaded up into the accumulator.
The carry flag is cleared and 7 is added. The
result is stored back in in &8F and the
processor jumps to the Score routine—given
in the first section of this part of
Cliffhanger—which straightens out the deci-
mal digits.

Loading A with 17 and jumping to
&FFEE, then loading A with 128 and jump-
ing to &FFEE again, sees the colour for
printing up the score. And jumping to the
subroutine at &1A3C prints it up on the
screen.

Next the Y coordinate counter in &7B is
loaded up and stored in &7E—you'll notice
that the program has compared the contents
of these two locations to see whether Willie
has moved. The instruction in Line 380
compares this Y coordinate with 56, to see
whether Willie has reached the top of the
slope where he gets his reward.

If he hasn't the BEQ instruction does not
operate and the processor hits the RTS and
returns. But if he has hit those heights, the

350 JSR&1A3C
360 LDA&7B
370 STA&7E
380 CMP # 56
390 BEQLb4
400 RTS
410 .Lb4
420 LDA&8C
430 CLC
440 ADC&83
450 STA&8C
460 INC&8C
470 INC&8C
480 JSR Score
90 INC&83
00 LDA&83
10 CMP#5

520 BNELb5
530 LDA # 0
540 STA&83

30 CALL&1D77
40 CALL&1D9B
50 CALINE99
60 IF?(&1 B2D

+?&83)AND4
CALM DEE

70 REPEAT
80 CALL&1C08
90 CAL111 CCB:

CALM CCB:
CALM CCB

95 CALL&1100
100 IF?(&1B2D

BEQ instruction takes the processor on into
the next routine.

BIG BUCKS
If Willie has reached his reward, this is where
the big bucks are scored. When the processor
branches on to the label Lb4 in Line 410, it
next loads up into the accumulator the cont-
ents of &8C, the location that holds the
thousands.

The carry flag is then cleared and the
contents of &83—the current screen
number—are added. The result is stored back
in &8C, then &8C is incremented twice for
reaching the reward. The Score routine is then
called again to straighten up the digits.

Next the contents of &83 are incremented.
If Willie had reached the reward, he moves
onto the next screen. So the screen number in
&83 has to be incremented. Then it is loaded
into A by the instruction in Line 500 and
compared with 5.

If the screen number has not been in-
cremented to 5—the last screen—yet, the BNE
instruction branches the processor forward
over the next routine.

Otherwise, A is loaded with 0 which is
stored in &83, the level location* This starts
the game off again on the next level.

Next, the contents of &89, Willie's lives,
are incremented. This adds a life for reaching
the reward.

REWARDED
The contents of Willie's status register, &70,
are then loaded into the accumulator and
ORed with &80. This sets bit seven and tells
the processor to bring on a new screen next
time this byte is checked—the result of the
ORing is stored back in &70.

Next A is loaded with 15 and X with 0 and
the subroutine at &FFF4 is jumped to. This
the equivalent of a BASIC *FX15,0 and clears
the sound. Then the subroutine at &14E7 is
jumped to, to sound the bell.

ON SPEED
Every time Willie reaches a reward and goes
up a level, the game is speeded up. So the
contents of the location that control the speed,
&84, are loaded up into the accumulator and
compared with 0. This checks whether the
speed has reached its fastest already.

If it has, the BEQ branches the processor on
to the end of the program. If not, the carry
flag is cleared and 2 is subtracted to increase
the speed.

The result is stored back in &84 and the
processor moves on to the RTS, and returns.

The POKES in Lines 730 and 740 adjust
data given in earlier parts of Cliffhanger.

MI 'HI
This little routine sounds the reward bell,
puts Willie up onto the next level, speeds the
game up and gives him a massive boost to his
score, among other things.

LDA $FF01
ANDA #247
STA $FF01
LDA $FF03
ANDA # 247
STA $FF03
LDA $FF23
ORA #8
STA $FF23
ORCC # $50
PULS A
PSHS X
LDB # 252

SBN STB $FF20
SC LEAX —1,X

BNE SC
LDX ,S
CLR $FF20

SD 	LEAX —1,X
BNE SD
LOX ,S
DECA
BNE SBN
ANDCC # $AF
PULS X
RTS

CLICK LDX #98
LDA # 4
JSR SOUND
RTS

DLL EQU $51ED
NLV EQU $4BF7
PRSC EQU $4C77

The first three instructions sound the reward
bell. This is done using the SOUND routine
lower down in the program. The pitch and
duration parameters are fed to it in the usual
way, via the numbers loaded into the A and X
registers.

LEVELLING UP
A is loaded with the contents of 18,238, the
level's storage location. It is then incremented
and ANDed with 3. This clears the six most
significant bits and stops the level number
being incremented higher than 3. The result

is stored back in 18,238.
Next the memory location variable in

$51 EE is decremented so that the game runs a
little bit faster.

Then the score is boosted by loading 5 into
B, 3 into A and calling the SCI routine given
below. B carries the number of the times the
digit is to be incremented and 3 tells the
routine which digit to increment. So here the
score is boosted by 500.

The processor then makes the long branch
back to the NLV routine which will put the
next level up on the screen*

KNOW THE SCORE
For the purposes of the next routine the
contents of the A and B registers have to be
swapped round. This is done by an EXG—or
EXchanGe—instruction. Then X is loaded
with 18,240, the start address of the score
data.

ABX adds the contents of B—which is the
number of the digit to be incremented—to X.
In other words, it shifts the pointer in X along
from the beginning of the score data to the
location of the actual digit that you want to
increment.

Then the contents of A—the number of
times that digit is to be incremented—and
X—the memory location of that digit—are
pushed onto the hardware stack. And the
processor jumps to the SDI subroutine which
does the incrementing. The contents of A and
X are then pulled back off the stack.

A is then decremented and the BNE SCT
instruction sends the processor round the
loop again, if A has not been decremented to
zero. So this digit incrementing routine is

ORG 20721
RWD LDA # 255

LDX # 150
JSR SOUND
LDA 18238
INCA
ANDA #3
STA 18238
DEC DLL + 1
LDB # 5
LDA # 3
JSR SCI
LBRA NLV

SCI 	EXG A,B
SCT LDX # 18240

ABX
PSHS A,X
JSR SDI
PULS A,X
DECA
BNE SCT
JSR PRSC
RTS

SDI 	LDA ,X
INCA
CMPA #10
BNE SNO
CLR ,X
LEAX — 1,X
BRA SDI

SNO STA ,X
RTS

SOUND PSHS A

executed A times, incrementing the appropri-
ate digit once each time it goes round.

When A has been counted down to zero
and the score has been worked out, the
processor drops out of the loop and jumps to
the PRSC routine. This is the one that prints
the score up on the screen.

And when it returns from doing that, the
processor hits another RTS and returns to the
main routine where this one was called.

DABBLING WITH DIGITS
A is loaded with the contents of the memory
location pointed to by X. This is the actual
number comprising the appropriate digit of
the score. It is then incremented!

The result is compared to 10. If it is not 10,
the BNE instruction skips the processor for-
ward to the label SNO where the incremented
digit in A is stored back in the location
pointed to by X and the processor returns.

But if it is, the digit pointed to by X is
cleared—that is, it is set back to zero. Then X
is decremented. This moves the X pointer on
to the location containing the next digit to the
left.

BRA SDI then sends the processor back
round the digit incrementing loop. This
increments the next digit and checks to see
whether the next digit has overflowed.

Eventually, the processor will find a digit
that does not overflow and store its new value
back in the location pointed to by X.

You'll note that when the processor gets
back to the score routine where it was called,
X is restored by pulling it off the stack.

The SOUND routine here works exactly the
same way as the routine used to play Green-
sleeves (see page 972). But this only plays one
note at a time and does not use the user stack
as its source of music data.

After the SOUND routine there is another
little routine called CLICK. This does Willie's
walking sound by loading the sound para-
meters into X and A and calling SOUND.

You can test the program using the M and
N keys and this short BASIC program:

10 POKE 3000,S7
20 EXEC 19426
30 EXEC 19902
40 GOTO 30

Originally invented for functional
programming, FORTH, with its
totally transportable programs and
speed, is now being used on a much
wider scale on many machines

FORTH is a very efficient high-level pro-
gramming language and operating system* Its
speed is closer to machine code than to
BASIC—but unlike machine code, it is very
easy to learn. And one of the supreme advan-
tages of FORTH programs is that they are
almost completely transportable from one
computer to another. This applies not just
between small home micros, either—the
machine's size or type has very little to do
with it* Transportability like this is a very rare
attribute in an industry beset with the pro-
blems of incompatibility—especially within
computer languages.

Several dialects and updates of FORTH
exist but the core principles are the same for
all* The introduction to FORTH given by
this series should be easy to follow by itself,
but needless to say, you will need FORTH in
your computer if you want to try any of the
examples*

You can buy a FORTH system for all the
computers covered here* This may be
supplied in the form of a tape or disk or ROM
cartridge and a very effective implementation
of the language may require no more than 8K.
This must be loaded over the top of the
resident BASIC, but program applications
produced using FORTH can stand on their
own.

So what is FORTH, and what use is it
likely to be to you?

STRUCTURE AND EFFICIENCY
FORTH was first developed in the early
1970's by Charles H* Moore who thought his
invention to be so powerful that he considered
it a 'fourth generation computer language'*
The computer he was working on at the time,
however, permitted only five-character
identifiers, so he amended the name to
FORTH*

The language was originally intended for
what is usually termed functional
programming—scientific and industrial pro-
cess control applications, robotics and so
forth. But it can also be used for the same
general purposes as any other programming
language* And it's a lot faster in execution
than some—typically twenty times faster than
BASIC, for instance.

Like some other 'modern' languages,
FORTH programs are highly structured,
with a modular design, and so are very easy to
get to grips with. Practically, this means that
programming is very straightforward—and
therefore quick, certainly much more so than
working in assembly language* FORTH can-
not entirely replace assembly language in
situations where extreme speed is required,
but it is usually easy to incorporate the
necessary routines when you have to*

FORTH coding is extremely compact once
compiled and in fact requires less memory
than equivalent assembly language routines—
even a 1K program will be capable of doing a
great deal. This makes FORTH popular in
situations where the program has to do a good
deal of work but where there may be memory
restrictions on the host computer, as on home
computers, for example*

You have met the concept of a compiled
language before in this series* This means that
when a program has been entered, it is
compiled, or translated, once and for all into
machine code. This is in contrast to an
interpreted language like BASIC, which is
translated while the program is actually
running—a much slower process.

The process in FORTH is actually a little
more complicated than either of these and one
of the interesting things about the language is
that it functions both as a compiler and as an
interpreter, though normally the latter. Only
when new words are being added to
FORTH'S vocabulary does it act as a
compiler*

During its interpreter mode, FORTH at-
tempts to match definitions to the program
instructions which have been entered and
have to be executed. But source code for a
program doesn't normally come in the form of
single line entries. Instead, screens are used to
form the input stream—which is literally a
stream of incoming data and instructions.

This is invariably read in from a storage
device, usually a disk although it is possible
from tape* A screen consists of a block of 1024
bytes of storage data space which corresponds
to the display space available on a typical
screen display. This is the only connection
there ought to be between the use of the term

screen in FORTH, and its normal
application.

Now the FORTH interpreter can look at
the full block (screenful) of data and take this
as the input stream. Several such screens may
be needed for a program and it is possible to
chain them so they are self-loading*

THE WAY OF THE WORD
A FORTH program is composed of a series of
functions (and operators) which are held in a
sort of reference bank called a dictionary* You
can use this dictionary of words—the FORTH
equivalent of a command—to create new
words of such complexity that a single one

USING THE STACK
LOW LEVEL ROUTINES

POSTFIX NOTATION
ARITHMETIC IN FORTH
STACK MANIPULATION

TRANSPORTABILITY
STRUCTURE AND EFFICIENCY

THE WAY OF THE WORD
LOOKING IN THE DICTIONARY

THE STACK

may act like a complete program* And you can
combine this new word with others to create
still more powerful command words* This is
similar to the way in which you have seen
LOGO and LISP working, where the simple,
inbuilt functions are chained together to make
more and more complex procedures.

A word definition has two parts—the first is
the header made up of the name which has
been given to the new word* The second part
is the body which can consist of words and/or
numbers and/or operators* The whole defi-
nition is entered using line input between a
colon and semi-colon*

Line input is the term used to describe the
entry of any group of words and figures prior
to pressing 'RETURN or 'ENTER I* FORTH
responds to such an input with the abbrevi-
ation OK if the entry is accepted, and ? if there
has been an error of some kind* Additional
system messages may also be displayed in the
second case*

So line input of a definition takes the form:

: newword oldword operator;
When newword is subsequently executed (car-
ried out) it'll achieve exactly the same result as
the oldword if this had been operated upon
instead*

Now suppose you wanted to repeat the
action achieved by newword several times*
Obviously it would be rather tedious and
wasteful of space to reuse newword on each
occasion. So why not set up a new definition?
Here's how it would look:
: rerun newword newword newword;
Now you need only to call up rerun to repeat
newword three times* And of course, each time
rerun is called into play this calls the original
based on oldword and its operator* You can see
each new definition automatically embodies
all of the old ones.

The word itself can be composed of almost
any combination of characters available on the
computer except control and graphics sym-
bols. Obviously, there's a good deal of sense
in giving meaningful names to these defi-
nitions* You need to be careful how you use
spaces, however* Spaces are very important in
word definitions and in the general command
structure of FORTH, because they are used
to mark the end of the word itself*

Let's look at a 'real' definition using one of
the resident words *" which is called the dot-
quote:

:GREET1* "THANK YOU VERY MUCH";
:GREET2 GREET1. "I AM FEELING";

There are no prizes for guessing what the
screen will display when GREET2 I RETURN I is
entered.*.

LOOKING IN THE DICTIONARY
Using these principles, a whole chain of
father-begat-son definitions can be created,
but their ancestry must trace right back to the
core dictionary* There are many useful words
contained there and it's well worthwhile get-
ting to grips with functions and meanings of
each word before you get seriously into
FORTH, for there's often the very real
danger of attempting to re-invent the wheel!

The actual number of words held in the
dictionary—the so called subset—depends on
the FORTH implementation you are using
but the full list can be inspected at will (using
the command word VLIST* A typical core
dictionary contains some 200 or 300 words*
Their definition closely follows the standards
laid down by the various FORTH bodies and
this is one of the things that ensures the very
high degree of program portability possible
with this language.

The dictionary may actually consist of
more than one vocabulary—the primary one is
called FORTH and this is the word to key
(and execute) by pressing I RETURN) or 'ENTER I
when you want to return to what is called the
context vocabulary.

All vocabularies link back to the FORTH
vocabulary and this helps to justify their
existence* When commands are entered,
FORTH first looks through whatever hap-
pens to be the current vocabulary and then
refers back to the FORTH vocabulary in
order to find a match for the word under
execution. As soon as it finds such a match,

the corresponding definition is carried out*
Putting the definition of rarely used words
into special vocabularies speeds up the search
time when in the FORTH vocabulary itself*

THE STACK
The working of FORTH—indeed its whole
structure—is built around what is termed the
stack* This is like the stack used in assembly
language programming and is used both to
hold and to transfer data items—numbers-
for use in various parts of a program.

By its very nature, information used in the
execution of a program sequence need only be
of a temporary nature and this is why the
concept of a stack is so very important*

A stack works on the 'last in first out'
(LIFO) principle, also referred to as `push-on
pop-off. It is perhaps easiest to think of this
in terms of an analogy* Imagine a stack of
dining plates—ideally on one of those sprung
canteen plate dispensers sunk in a way that
leaves the topmost plate always level with the
surface* As a plate is taken off, so the one
below is pushed to the top—and as a plate is
added, this pushes down the rest*

These plates can be likened to the way data
items are treated. When added to the stack, a
data item is pushed on, and may be 'buried' by
other data items subsequently pushed onto
the stack* The first item can be removed—or
`popped off' easily enough—it's on top* Any-
thing below it has to have what's above it on
the stack removed before it can be accessed*

All you have to do to put a number on the
stack is to type it in and press 'RETURN I. It can

be recalled by using FORTH's dot command
(a full stop .) which prints the topmost
number of the stack if there is one, otherwise
zero is displayed.

Several dots may be used to call out more
than a single numeral. So if you were to key in
5 4 3 2 RETURN (remembering the spaces) and
follow this with four dots, you would have the
numbers 2 3 4 5 displayed before the 0K
prompt. Enter another dot and you will get
zero displayed because the stack is now
empty. Follow this with yet another dot and
the error message ? EMPTY STACK or ?STACK
EMPTY is printed out.

The stack enables various parts of a
FORTH program to communicate with each
other. Various low-level routines can access
information that has been placed on the stack,
remove or modify this as necessary and then
return it back to the stack for use by another
part of the program.

To give a simple example, think of the
addition of 5 and 7. First 5 and then 7 are
placed on the stack as separate data items.
Next the program needs some sort of instruc-
tion to add these two numbers—a function
already defined in the dictionary by the word
+ (this is a word, and not a symbol in
FORTH).

Thus the key sequence is:

57 +

If you were to press 1RETURN now, the line
would terminate with OK to indicate that these
data items had been placed on the stack. But
the presence of + in the line entry has forced

execution of at least part of a procedure, for
this is called plus (perhaps not surprisingly!)
and the word + is defined as 'leave the sum of
n1 and n2 (on the stack)'.

Following this instruction, the sum of n1
and n2 is passed to the stack and can be
revealed using the dot command followed by
!RETURNS to print the last entry on the stack.
The resulting line display would be:

5 7 + . 12 0K

You could just as well have entered 5 7 + and
each as separate line entries to give the

message 12 OK.
It is important to notice the form in which

the sum is entered—the mathematical
operator is entered after the numbers to
which it refers. This is familiar to anyone who
has used an ordinary calculator. Both these
and FORTH operate on the concept of what
is termed reverse Polish notation (RPN),
otherwise called postfix notation (PFN). This
is unlike infix notation, used in conventional
writing arithmetic or the prefix (Polish) not-
ation used in LISP and LOGO, for example.

FORTH has to use PFN so that use can be
made of the stack. The 'conventional' arith-
metic form 5 + 7 seems to be much more
readable, but of course if a stack is being used,
the operator + has nothing to work on
because the second number is not present on
the stack when the operator is called.

For those unfamiliar with PFN, even
simple arithmetic may become a daunting
task. But it is made simpler by remembering
the LIFO principle of the stack.

The first rather obvious rule is that all the
values have to be on the stack before you can
actually do anything! The operators you can
use follow conventional practice and several
operations may be performed in a single input
entry. You can control when operations are
done by specifying the order of the operators.
For example:

7 9 3 + . 84 OK

is equivalent to (3 + 9) *7 and:

793 * + .340 K

is equivalent to 3*9 + 7.

STACK MANIPULATION
Simply calling numbers off the top of the
stack isn't really too useful by itself, and this is
really the point where you need to consider
the FORTH words which are available for
duplicating, changing the position or remov-
ing stack entries.

The stack manipulation commands include
he following:

WordIPurpose 	 Before after
Example

DUP 	 n1 --- n1 n1
• uplicates the 	69 DUP .. 69 69 0K
opmost stack value

DROP 	 n1 ---
removes and discards 	64 15 DR0P .. 64 0
he topmost value 	STACK EMPTY

SWAP 	 n1 n2 --- n2 n1
exchange the two 	17 9 SWAP .. 17 9 0K
topmost stack values

OVER 	 n1 n2 --- n1 n2 n1
puts a copy 	56 13 0VER . . . 56 13 56 0K
of the second
item on the stack

R0T 	 n1 n2 n3 --- n2 n3 n1
rotates the top 	389 ROT . . . 8 9 3 0K
three times on the stack

Some interesting points appear here. The first
is the 'before and after' arrangement of the
display explaining the effect of a particular
word. Every FORTH glossary gives this as:

before --- after

he dashes suggest the presence and action of
he word used on things—numbers—that

. hould be on the stack before execution. This
s called stack notation.

The second point—which leads on to
omplex program constructions in

I ORTH—is that it should be quite clear that
he various manipulations enable you to cir-
umvent many of the restrictions imposed by
he LIFO nature of the stack. The next article
rill show how a FORTH program evolves.

Here is the third part of INPUT's adventure
game. Remember, there are no clues in this
series of articles, so don't be mislead by the
illustrations.

When you have finished adding the latest
lines of programming, do not forget to SAVE
the program ready for next time.

200 REST0RE 4020: F0R Z=1 T0 21
210 READ K(Z),F(Z): LET NN =Z*2+124:

G0SUB 4500: LET 0$(Z) = S$: LET
NN =Z*2+125: G0SUB 4500: LET
E$(Z) = S$

230 NEXT Z
240 F0R Z=1 T0 32
250 READ R(Z): LET NN =167 + Z: G0SUB

4500: LET R$(Z) = S$
260 NEXT Z
530 INPUT INVERSE 1;"WHAT N0W?",LINEI$
535 IF I$= "" THEN G0T0 530
540 IF 1$ = U$ AND TT= 0 0R 1$ = ,-1$

AND II = 0 THEN G0SUB 3040:
G0T0 270

550 LET X$=1$: LET Y$= CHR$ 32: G0SUB
5000

560 IF IN =0 THEN LET V$ =-1$: G0T0 580
570 LET V$=1$(T0 IN-1)
580 LET T$ =1$(1N +1 T0)
590 IF V$ = "G0" THEN LET V$=T$
640 LET 1= 0
650 F0R Z=1 T0 32
660 LET X$=R$(Z): LET Y$=V$: G0SUB

5000: IF IN =1 THEN LET I = R(Z)
670 NEXT Z
680 IF I <1 THEN PRINT "I D0N'T KN0W

H0W TO ❑ ";1$: G0T0 530
690 IF E$(L,1)< > CHR$ 32 AND I< >9

AND I < >10 AND 1< >5 AND I<>12
AND I< >8 AND F=1 THEN PRINT

"THE ril";E$(0,"W0N'T LET Y0U.": PAUSE
100: G0T0 270

1760 REM PR0C A
1770 CLS
1780 PRINT AT 11,6;: LET NN =65: G0SUB

3960
1800 LET NN =33: G0SUB 3960
1810 PAUSE 750
1820 G0SUB 1840
1830 RETURN
1840 REM PR0C B

1850 CLS
1860 PRINT FLASH 1;AT 11,8;

"Y0U'RE DEAD!"
1880 ST0P
1890 CLS
1900 IF K(3) < > —I THEN LET NN =66:

G0SUB 3960: LET NN =67: G0SUB 3960:
PAUSE 0: RETURN

1910 IF K(2) < > —1 THEN LET NN =68:
G0SUB 3960: LET NN =67: G0SUB 3960:
PAUSE 0: LET L= L-6: RETURN

1920 PRINT FLASH 1;AT 11,10;
"WELL DONE!"

1940 PRINT FLASH 1;AT 16,10;
"Y0U'VE W0N"

1960 ST0P
1970 REM PR0C C
1980 LET PQ= 0: F0R Z=1 T0 21
1990 LET X$= 0$(Z): LET Y$=T$: G0SUB

5000: IF IN> 0 THEN LET PQ=Z
2000 NEXT Z
2010 IF PQ= 0 THEN PRINT "I D0N'T

UNDERSTAND E";T$;".": G0T0 2070
2020 IF K(PQ)= —1 THEN PRINT "Y0U'VE

ALREADY G0T IT!": G0T0 2070
2030 IF K(PQ) < >L THEN PRINT "THEO";

T$;" IS N0T HERE!": G0T0 2070
2040 IF PP >3 THEN PRINT "Y0U CAN'T

CARRY ANY M0RE.": G0T0 2070
2050 LET K(PQ)= —1: LET PP =PP +1:

PRINT "0KAY—Y0U'VE G0T IT."
2060 LET NN =166: G0SUB 4500: IF

T$=S$ THEN LET XX= XX + 600
2070 PAUSE 100
2080 RETURN
2090 REM PR0C D
2100 DIM G$(17): LET NN =153: G0SUB

4500: LET G$=S$: DIM B$(17): LET
NN =155: G0SUB 4500: LET B$=S$: IF
E$(L) = G$ 0R E$(L) = B$ THEN LET
NN =69: G0SUB 3960: PRINT E$(L): LET
NN =34: G0SUB 3960: PAUSE 250: ST0P

2110 IF E$(L,1) = CHR$ 32 THEN LET
NN =35: G0SUB 3960: PAUSE 300: G0T0
2440

2120 DIM G$(17): LET NN =129: G0SUB
4500: LET G$=S$: IF G$=E$(L) THEN
LET NN =36: G0SUB 3960: PAUSE 350:
G0T0 2440

2130 LET C$="": LET H$=""
2140 LET WW=1: LET AA= 0

2150 IF K(20) = —1 THEN LET
WW =WW+ 2

2160 IF K(9) = —1 THEN LET WW =WW +3
2170 IF K(15) = —1 THEN LET AA = AA + .E
2180 IF K(14) = —1 THEN LET AA = AA + .E
2190 IF K(10) = —1 THEN LET

WW =WW +1
2200 IF AA =1 THEN LET WW =WW + 3
2210 IF WW=1 AND C$="" THEN INPUT

"D0 Y0U WANT T0 FIGHT WITH BARE
HANDS? (Y/N)",H$

2220 DIM G$(17): LET NN =70: G0SUB
4500: LET G$=S$: IF E$(L)=G$ AND
H$="Y" THEN LET NN =37: G0SUB
3960: PAUSE 250: G0SUB 1840

2230 DIM G$(17): LET NN =135: G0SUB
4500: LET G$=S$: IF H$="Y" AND
F(L) >1 AND E$(L) < >G$ THEN PRINT
"Y0U CAN'T FIGHT THECI";E$(0,"WITH
BARE HANDS!": PAUSE 150: G0T0 2440

2240 IF H$< >"Y" AND WW=1 THEN
G0T0 2440

2250 LET EE= INT (RND*6) +1: CLS
2260 F0R Z= 0 T0 21
2270 PRINT AT Z,0;
2280 NEXT Z
2290 PRINT FLASH 1;AT 10,12;"FIGHTING!"
2310 PAUSE 100
2320 IF WW> F(L) AND EE > 2 THEN LET

V= V — 2: G0T0 2360
2330 IF WW> F(L) AND EE< =2 THEN LET

V= V-1: G0T0 2380
2340 IF WW< = F(L) AND EE> =4 THEN

LET V = V-3: G0T0 2360
2350 IF WW< = F(L) AND EE <4 THEN LET

V= V — 3: G0T0 2380
2360 IF V<1 THEN G0SUB 1840
2370 PRINT ""Y0U ARE W0UNDED.'""Y0Uf

VITALITY IS ";V: G0T0 2410
2380 IF V<1 THEN G0SUB 1840
2390 PRINT ""Y0U HAVE W0N THE

BATTLE.'""Y0UR VITALITY IS ❑ ";V
2400 LET E$(L)= — : PAUSE 150: RETURN
2410 LET LL= INT (RND*21)+ I: IF

K(LL) = —I THEN PRINT "Y0U HAVE
DR0PPED THE",0$(11): LET K(LL)=L:
LET PP= PP-1

2420 INPUT "D0 Y0U WANT T0 C0NTINUE
THEE' 	❑ FIGHT? (YIN)", LINE C$

2430 IF C$="Y" THEN G0T0 2140
2440 CLS : RETURN

Continue entering Escape, INPUT's
new adventure game. LOAD in the
existing program and add these
lines. The program cannot be RUN
until it is completed

2450 REM PR0C E
2460 CLS
2470 PRINT "Y0U HAVE C0LLECTED:

LET PP=0
2480 F0R Z=1 T0 21
2490 IF K(Z)=- -1 THEN PRINT

"THEE";0$(Z): LET PP= PP + 1
2500 NEXT Z
2510 IF PP=0 THEN PRINT "N0THING"
2520 PRINT "Y0UR VITALITY IS ❑ ";V
2530 PAUSE 250
2540 RETURN
2550 REM PR0C F
2560 CLS
2570 LET NN =71: G0SUB 3960
2580 PAUSE 50
2590 LET J =INT (RND*6) + 1
2600 IF TT<1 AND II <I THEN LET

NN =72: G0SUB 3960: G0T0 2720
2610 IF TT=1 AND 11=1 AND J>3 THEN

G0T0 2680
2620 IF TT <1 AND 11=1 THEN G0T0 2680
2630 LET NN =38: G0SUB 3960
2640 PAUSE 300: LET U$ = ""
2650 F0R Z=0 T0 5: LET PQ=INT (RND*26)

+97: LET U$=CHR$ (PQ)+U$: NEXT Z
2660 LET NN =73 G0SUB 3960: PRINT U$:

LET 7 = 0
2670 PAUSE 150: G0T0 2730
2680 LET NN =39: G0SUB 3960
2690 PAUSE 250: LET J$=""
2700 F0R Z=0 T0 5: LET PQ=INT

(RND*26)+ 97: LET J$= CHR$ (PQ)+J$:
NEXT Z

2710 LET NN =73: G0SUB 3960: PRINT J$:
LET II= 0

2720 PAUSE 150
2730 CLS : RETURN
2740 REM PR0C G
2750 IF E$(L,1)< > CHR$ 32 THEN RETURN
2760 CLS : LET NN =74: G0SUB 3960
2770 LET E$(L) = M$: LET F(L) =10
2780 LET N=0: LET S=0: LET E= 0: LET

W= 0: LET U=0: LET D= 0: LET F=1
2790 RETURN
2800 REM PR0C H
2810 IF E$(L,1)=CHR$ 32 THEN LET

NN =75: G0SUB 3960: PAUSE 100: G0T0
2980

2820 LET NN =153: G0SUB 4500: DIM
G$(17): LET G$=S$: IF E$(L)=G$ THEN

G0T0 2826
2822 LET NN =155: G0SUB 4500: DIM

G$(17): LET G$ =S$: IF E$(L)=G$ THEN
G0T0 2826

2825 G0T0 2830
2826 PRINT "N0 DEAL!": LET NN = 34:

G0SUB 3960: PAUSE 250: ST0P
3960 REM DEC0DE & PRINT STRING
3970 LET Z(1) = A(NN): LET XXX= USR

65067: PRINT "Z$: RETURN
4020 DATA 1,0,2,0,3,0,0,0,0,4,8,0,KK,0,8,0,

9,0,10,0,11,2,12,0,0,0,14,4
4030 DATA 15,6,0,0,17,0,0,0,19,0,20,1,21,0
4040 DATA 8,5,5,4,8,9,10,9,10,11
4050 DATA 2,2,12,3,3,1,1,1,1,1,1,1
4060 DATA 6,7,12,12,1,1,1,1,1,1
4500 REM DEC0DE STRING INT0 S$
4510 LET Z(1) =A(NN): LET XXX= USR

65067: LET X$ = Z$: LET Y$ + CH R$9
4520 G0SUB 5000: LET S$=Z$ (T0 IN-1)
4530 RETURN
5000 REM INSTR R0UTINE
5010 LET IN =0: IF LEN Y$> LEN X$ THEN

RETURN
5020 F0R Z=1 T0 (LEN X$-LEN Y$+1)
5030 IF Y$=X$(K T0 K+ LEN Y$ -1) THEN

LET IN =Z: LET Z= (LEN X$- LEN Y$ -1)
5040 RETURN

285 E$(NN) =Z$:IF E$(NN)="El"THEN
E$(NN)=""

385 0NL-9GOSUB1190,1260,1240,1330,
1470,1640,1790,1340,1060,1310,1360,
1140,2080

665 IF (1-1) <1 THEN V$=`"':G0T0 670
666 V$=LEFT$(I$,I-1)
1670 IF INT(RND(1)18)<4 THEN F=0:

TX=63:G0SUB 9900
1680 RETURN
1690 IF INT(RND(1)18)+1 =3 AND

DW=1 THEN 3100
1700 PRINT "0"
1710 N=0:S=1:E=0:W=1:

U=0:D= 0
1720 PRINT:TX= 25:

G0SUB 9900
1730 IF K(17) = -1 THEN TX = 26:

G0SUB 9900:D=1
1740 RETURN
1750 PRINT"0"
1760 N =1:S= 0:E= 0:W=0:

U -= 0:D=0
1770 PRINT:TX= 27:

G0SUB 9900
1780 RETURN
1790 PRINT"0"
1800 N =0:S=1:E= 0:W=0:

U=1:D= 0
1810 PRINT:TX=12:

G0SUB 9900

1820 IF K(7) - -1 THEN TX=64:
G0SUB 9900:D=1

1830 RETURN
1840 IF INT(RND(1)18) =1 THEN G0SUB

2860
1850 PRINT "D":N=1:S=1:E=1:W=0:

U = 0:D =1
1860 PRINT:TX = 30:

G0SUB 9900
1870 RETURN
1880 IF INT(RND(1)1 8) +1 =I AND

DW=1 THEN 3100
1890 PRINT "0":N=1:S=1:E=1:W=1:

F=0
1900 PRINT:TX= 31:

G0SUB 9900
1910 IF E$(L) < >`"' THEN PRINT"EHERE

IS APFE$(0"PJPASSING.":F=1
1920 RETURN
1930 PRINT "0":N=1:S=1:E=0:W=1:

U = 0:D =1
1940 PRINT:TX = 32:

G0SUB 9900
1950 RETURN
1960 PRINT "CI A"TAB(255)TAB(168);:

TX = 65:G0SUB9900
2000 TX= 33:G0SUB 9900
2010 F0R DL =I T0 1000:IF PEEK

(198)=64 THEN NEXT DL
2050 PRINT"O A"TAB(255)TAB(172)

"Y0U'RE DEAD!!!":
G0T0 10000

2080 PRINT"0"
2090 IF K(3) < > -1 THEN PRINT:TX= 66:

G0SUB 9900:PRINT:TX= 67:
G0SUB 9900

2100 IF K(3) < > -1 THEN GET D$:IF
D$ ="" THEN 2100

2110 IF K(3) < > -1 THEN RETURN
2120 IF K(2) < > -1 THEN PRINT:TX= 68:

G0SUB 9900:PRINT:TX= 67:
G0SUB 9900

2130 IF K(2) < > -I THEN GET D$:IF
D$="" THEN 2130

2140 IF K(2) < > -1 THEN L = L -I:
RETURN

2150 PRINT"B"TAB(255)TAB(174)"WELL
DONE!"

2160 PRINT TAB(13)"10U'VE W0N."
2170 END
2180 :
2190 QQ= 0
2200 F0R CC =1 T0 21
2210 F0R SC=1 T0 LEN (0$(CC))- LEN

(T$) +1
2220 IF MID$(0$(CC),SC,LEN(T$))=T$

AND SC> 0 THEN QQ= CC:
GOT0 2240

2230 NEXT SC,CC
2240 IF QQ= 0 THEN PRINT"D D0N'T

UNDERSTAND "T$".":G0T0 2300
2250 IF K(QQ) = —1 THEN PRINT"1110U

ALREADY HAVE IT!":G0T0 2300
2260 IF K(QQ) < >L THEN PRINTAIIHE "

T$" IS N0T HERE!":G0T0 2300
2270 IF PP>3 THEN PRINT"J0U CAN'T

CARRY ANY MORE.":G0T0 2300
2280 K(QQ) = —1:PP = PP +1:PRINT

"EKAY —Y0U N0W HAVE IT."
2290 TX=166:G0SUB 9950:IF T$=Z$

THEN XX= XX +600
2300 G0SUB 20000:RETURN
2320 TX=153:G0SUB 9950:D1$ = Z$:

TX=155:G0SUB 9950
2335 IF E$(L) = D1$ 0R E$(L)=Z$ THEN

2350
2340 G0T0 2360
2350 TX= 69:G0SUB9950:PRINT Z$,E$(L)

"!":TX=34:GOSUB9900:G0SUB 20000:
NEXT:G0T01000

2360 IF E$(L) ="" THEN TX= 35:G0SUB
9900:G0SUB 20000:G0T0 2670

2370 TX =129:G0SUB 9950
2375 IF E$(L)=Z$ THEN TX= 36:G0SUB

9900:G0SUB 20000:G0T0 2670
2380 C$="":HS=""
2390 WW = 1:AA = 0
2400 IF K(20) = —1 THEN WW=

WW +2
2420 IF K(9) = —1 THEN WW=

WW +3
2430 IF K(15) = —1 THEN AA=

AA+ .5
2440 IF K(14) = —1 THEN AA=

AA + .5
2450 IF K(10) = —1 THEN WW=

WW +1
2460 IF AA =1 THEN WW=

WW +3
2470 IF WW=1 AND C$=""THENPRINT

"EIGHT WITH BARE HANDS— Ell/
13?":INPUT H$

2480 TX = 70:G0SUB 9950
2485 IF E$(L)=Z$ANDH$="Y"THEN

TX= 37:GOSUB 9900:G0SUB20000:G0T0
2040

2490 TX=135:GOSUB 9950
2495 IF H$="Y" AND F(L) >1 AND E$(L)

< >Z$ THEN 2510
2500 G0T0 2530
2510 PRINT "J0U CAN'T FIGHT THE "

E$(L)" WITH BARE HANDS!"
2520 G0SUB20000:G0T0 2660
2530 IF H$< >"Y" AND WW=1 THEN

2670
2540 E=INT(RND(1)*6) +1:

PRINT "a"
2550 PRINT "A"TAB(255)TAB(212)

"Y0U'RE FIGHTING!"
2560 G0SUB 20000
2570 IF WW> F(L) AND EE > 2 THEN

V= V — 2:G0T0 2600
2575 IF WW> F(L) AND EE< =2 THEN

V= V —1:G0TO 2630
2580 IF WW< = F(L)AND EE> =4 THEN

V= V — 3:G0TO 2600
2590 IF WW<F(L) AND EE<4 THEN

V= V —3:G0T0 2630
2600 IF V<1 THEN 2040
2610 PRINT:PRINT"J0U'RE W0UNDED."
2620 PRINT "JOUR VITALITY IS ";V:

G0T0 2390
2630 IF V<1 THEN 2040
2640 PRINT "JOU'VE W0N THE BATTLE."
2650 PRINT "J0UR VITALITY IS ";V
2660 E$(L)=`"':G0SUB20000:

RETURN
2680 LL = INT(RND(1)*21) + 1
2700 IF K(LL) = —1 THEN PRINT"J0U'VE

DR0PPED THE "0$(LL))".":K(LL)=L:
PP = PP —1

2710 PRINT "M0 Y0U WANT T0 C0NTINUE
FIGHTING— QJ / 2:1?":INPUT C$

2720 IF C$="Y" THEN 2390
2730 PRINT "D":RETURN

2760 PRINT "DEI0U HAVE
C0LLECTED: —":PP = 0

2780 FOR CC =1 T0 21
2790 IF K(CC) = —1 THEN PRINT "THE "

0$(CC)",":PP= PP +1
2800 NEXT CC
2810 IF PP= 0 THEN PRINT "N0THING."
2820 PRINT "JOU R VITALITY IS ";V
2830 G0TO 20000
2860 PRINT "0"
2870 PRINT:TX =71:G0SUB 9900
2880 G0SUB20000
2890 J =INT(RND(1)*6) +1
2900 IF TT <1 AND II <1 THEN TX= 72:

G0SUB9900:GOSUB 3070
2910 IF TT=1 AND 11=1 AND J>3 THEN

2990
2920 IF TT <1 AND 11=1 THEN 2990
2930 TX=38:G0SUB 9900
2940 GOSUB 20000:G0SUB 20000:

2950 FOR CC= 0 TO 5:QQ= INT(RND(1)*26)
+65:TT$=CHR$(QQ)+TT$:NEXT CC

2960 TX=73:G0SUB 9900:PRINT
TT$:TT= 0

2980 GOSUB20000:G0T0 3080
2990 TX = 39:G0SUB 9900
3000 G0SUB 20000:G0SUB 20000:11$ = ""
3020 F0R CC= 0 T0 5:QQ= INT(RND(1)*26)

+65
3030 11$ = CHR$(QQ) +11$:NEXT CC
3050 TX=73:G0SUB 9900:

PRINTII$:II = 0
3070 G0SUB 20000
3080 PRINT "0":RETURN
3100 PRINT "D":TX=74:

G0SUB 9900
3120 E$(L) =JM$:F(L) =10

Fl
1660 PRINT"FNW(30)
1670 RETURN
1680 IF RND(18)=1 AND dw=1 THEN

PR0CG:RETURN
1690 CLS:N = 1:S =1:E =1:W = 1:F = 0
1700 PRINT"FNW(31)
1710 IF E$(L) < >"" THEN PRINT"There is

a "E$(L)" passing.":F =1
1720 RETURN
1730 CLS:N=1:S=1:E=0:W=1:U=0:

D=1
1740 PRINT"FNW(32)
1750 RETURN
1760 DEFPR0CA
1770 CLS
1780 PRINTTAB(10,15)CHR$(141);CHR$

(130)FNW(65)
1790 PRINTTAB(10,16)CHR$(141);CHR$

(130)FNW(65)
1800 PRINTFNW(33)
1810 D=INKEY(1500)

1820 PROCB
1830 ENDPR0C
1840 DEFPR0CB
1850 CLS
1860 PRINTTAB(10,15)CHR$(141);CHR$(129)

"Y0U'RE DEAD!"
1870 PRINTTAB(10,16)CHR$(141);CHR$(129)

"Y0U'RE DEAD!"
1880 END
1890 CLS
1900 IF K(3) < > —1THEN PRINT"FNW(66)"

FNW(67):D$ = GET$:RETURN
1910 IF K(2) < > — I THEN PRINT"FNW(68)"

FNW(67):D$ = GET$:L = L — 6:RETURN
1920 PRINTTAB(10,15)CHR$(141);CHR$(129)

"WELL D0NE!"
1930 PRINTTAB(10,16)CHR$(141);CHR$(129)

"WELL D0NE!"
1940 PRINTTAB(10,19)CHR$(141);CHR$

(131);"You've won"
1950 PRINTTAB(10,20)CHR$(141);CHR$

(131);"You've won"
1960 END
1970 DEFPR0CC
1980 q= 0:F0R c=1 T0 21
1990 IF INSTR(0$(c),T$)>0THEN q=c
2000 NEXT
2010 IF q=0 THEN PRINT"I don't

understand ❑ "T$".":G0T0 2070
2020 IF K(q) = —1THEN PRINT"You've

already got it!":G0T0 2070
2030 IF K(q) < >L THEN PRINT"The "T$

"is not here!":G0T0 2070
2040 IF p>3 THEN PRINT"You can't carry

any more.":G0T0 2070
2050 K(q) = — 1:p = p+ 1:PRINT"0kay-

you've got it."
2060 IF T$=FNX(FNW(166)) THEN

x=x+600
2070 D=INKEY(250)
2080 ENDPR0C
2090 DEFPR0CD
2100 IF 	= FNX(FNW(153)) 0R E$(L) =

FNX(FNW(155))THEN PRINTFNW(69)E$(L)
"!":PRINTFNW(34):D = INKEY(500):END

2110 IF E$(L)=`"' THEN PRINTFNW(35):d=
INKEY(750):G0TO 2440

2120 IF E$(L) = FNX(FNW(129)) THEN PRINT
FNW(36):d=INKEY(700):G0T0 2440

2130 C$="":H$=""
2140 w = I:a = 0
2150 IFK(20)= —1 THEN w = w +2
2160 IFK(9)= —1 THEN w= w +3
2170 IFK(15)= —1 THEN a =a +.5
2180 IFK(14)= —1 THEN a =a +.5
2190 IFK(10)= —1 THEN w=w+1
2200 IF a=1 THEN w=w+3
2210 IF w=1 AND C$="" THEN

INPUT"You want to fight with bare
hands?(y/n)"H$

2220 IFE$(L) = FNX(FNW(70)) AND H$=

"y" THEN PRINTFNW(37):d=INKEY
(500): PR0CB

2230 IF H$="y" AND f(L) >1 AND E$(L) <
> FNX(FNW(135)) THEN PRINT"You
can't fight the ❑ "E$(L) "Elwith bare
hands!":D=INKEY(250):G0T0 2440

2240 IF H$ < >"y" AND w=1 THEN 2440
2250 e = RND(6):CLS
2260 F0R d =1 T0 20
2270 PRINTTAB(0,d)CHR$(131);CHR$(157)
2280 NEXT
2290 PRINTTAB(10,10)CHR$(141);CHR$

(132);CHR$(136)"Fighting!"
2300 PRINTTAB(10,11)CHR$(141);CHR$

(132);CHR$(136)"Fighting!"
2310 d=INKEY(200)
2320 IF w>f(L)AND e>2 THEN

V=V-2:G0T0 2360
2330 IF w>f(L)AND e< =2 THEN

V=V-1:G0T0 2380
2340 IF w< =f(L)AND e> =4 THEN

V =V —3:G0T0 2360
2350 IF w< =f(L)AND e<4 THEN

V =V —3:G0T0 2380
2360 IF V<1 THEN PR0CB
2370 PRINT""You are wounded."'"Your vitality

is ❑ "; V:G0T0 2410
2380 IF V<1 THEN PR0CB
2390 PRINT""You have won the battle.'""Your

vitality isIII";V
2400 MO =`"':D=INKEY(250):ENDPR0C
2410 1= RND(21):IF K(I) = —1 THEN

PRINT"You have dropped the ❑ "
0$(1)".":K(1) = L:p = p — 1

2420 INPUT"Do you want to continue the
fight?(y/n)"C$

2430 IF C$="y" THEN2140
2440 CLS:ENDPR0C
2450 DEFPR0CE
2460 CLS
2470 PRINT"You have collected: —":p= 0
2480 F0R c =1 T0 21
2490 IF K(c)= —1 THEN PRINT"the

"0$(c)",":p=p +1
2500 NEXT
2510 IF p=0 THEN PRINT"nothing"
2520 PRINT"Your vitality is ❑ ";V
2530 D=INKEY(500)
2540 ENDPR0C
2550 DEFPR0CF
2560 CLS
2570 PRINT"FNW(71)
2580 d=INKEY(100)
2590 J=RND(6)
2600 IF t<1 AND i<1 THEN

PRINT FNW(72):G0TO 2720
2610 IF t=1 AND i=1 AND J >3 THEN 2680
2620 IF t<1 AND i=1 THEN 2680
2630 PRINTFNW(38)
2640 d=INKEY(700):t$=""
2650 F0R c=0 T0 5:q=RND(26)+96:t$=

CHR$(q) +t$:NEXT
2660 PRINT FNW(73)'t$:t= 0
2670 D=INKEY(300):G0T0 2730
2680 PRINTFNW(39)
2690 d=INKEY(500):i$=""
2700 F0R c=0 T0 5:q = RND(26) +96:

i$=CHR$(q) +i$:NEXT
2710 PRINTFNW(73)'i$:i = 0
2720 D=INKEY(300)
2730 CLS:ENDPR0C
2740 DEFPR0CG
2750 IF E$(L) < >"" THEN ENDPR0C
2760 CLS:PRINT"FNW(74)
2770E$(L) =JM$:f(L) =10
2780 N= 0:S= 0:E= 0:W= 0:U= 0:D=0:

F=1
2790 ENDPR0C
2800 DEFPR0CH
2810 IF E$(L) ="" THEN PRINTFNW

(75):D=INKEY(200):G0T0 2980
2820 E$(L) = FNX(FNW(153)) 0R

E$(L) = FNX(FNW(I 55)) THENPRINT"No
DealrFNW(34):D=INKEY(500):END

2830 PRINTTAB(0,20);:INPUT"What are you
prepared to offer?"offer$:value = 0

2840 IFK(21)= —1AND offer$=FNX
(FNW(166))THEN 2890

2850 IF offer$=FNX(FNW(166))THEN PRINT
FNW(76):D=INKEY(300):ENDPR0C

2860 IF offer$=FNX(FNW(126)) 0R offer$=
FNX(FNW(77)) AND K(1) = —1 AND
E$(L) = FNX(FNW(70)) THEN PRINT"It's
a dear:D=INKEY(250):E$(L)= — :
K(1)=0:ENDPR0C

2870 IF offer$=FNX(FNW(126)) AND
E$(L) = FNX(FNW(70)) THEN PRINTFNW
(78):D = INKEY(250):G0T0530

2880 IF offer$ < >FNX(FNW(166))THEN
PRINTFNW(79)offer$"?":D = INKEY(350):
G0T0 2980

2890 PRINT"You have ";x"Illgold
❑ sovereigns."'FNW(80);:INPUToffer

2900 IF offer> x THEN PRINTFNW(81):G0T0
2890

2910 CLS:PRINT"FNW(82):D=INKEY(250)
2920 price= RND(12)*50
2930 IFprice > offer ECLS:PRINT"FNW(83)

'FNW(84);:1NPUT""inc$
2940 IF offer> =price ❑ THEN2990
2950 IF inc$="y" THEN 2890
2960 IFE$(L) < > FNX(FNW(129))THENPRINT

FNW(85):D = INKEY(250):PR0CD:
ENDPR0C

2970 PRINTFNW(86):D=INKEY(300):PRINT
"You surrender.":D=INKEY(100):END

2980 CLS:ENDPR0C
2990 PRINT "0kay 	It's a deal": E$(L) =

"": x= x —offer
3000 IF x=0 THENK(21) = 21
3010 IF offer< > 0 THEN PRINT"You've lost

D" ;offer; "gold sovereigns."

3020 D=INKEY(250)
3030 ENDPR0C
3040 DEFPR0CI
3050 CLS
3060 PRINT"FNW(87)
3070 IF 1$ = i$ ANDi = 0 THEN 3250
3080 IF 1$ =t$ AND t=0 THEN

PRINT':INPUT"Where do you wish to
go",d$:t = —1

3090 IF d$=FNX(FNW(88)) 0R d$=FNX
(FNW(89)) THEN L=19:ENDPR0C

3100 IF d$= FNX(FNW(90))0R d$= FNX
(FNW(9I))THEN L=1:ENDPR0C

3110 IF d$= FNX(FNW(92))THEN L=8:
ENDPR0C

3120 IF d$ = FNX(FNW(93)) 0Rd$ = FNX
(FNW(94)) THEN L=2:ENDPR0C

3130 IF d$=FNX(FNW(95)) THEN L=9:
ENDPR0C

3140 IF d$=FNX(FNW(96)) 0R d$=FNX
(FNW(97)) THEN L=10:ENDPR0C

3150 IF d$=FNX(FNW(98)) THEN L=15:
ENDPR0C

3160 IF d$= FNX(FNW(99))THEN L=21:
ENDPR0C

3170 IF d$= FNX(FNW(100)) THEN L=11:
ENDPR0C

3180 IF d$=FNX(FNW(101)) 0R d$=FNX
(FNW(102)) THENL=20:ENDPR0C

3190 IF d$=FNX(FNW(103)) 0R d$=FNX
(FNW(104)) THEN L=17:ENDPR0C

3200 IF d$= FNX(FNW(105))0R d$= FNX
(FNW(106)) THEN L=3:ENDPR0C

3210 IF d$=FNX(FNW(107)) THEN L=12:
ENDPR0C

3220 IF d$=FNX(FNW(108)) 0R d$=FNX
(FNW(109))THEN L=13:ENDPR0C

3230 IFd$=FNX(FNW(110)) THEN L=5:
ENDPR0C

3240 PRINT"I don't know where the "d$
"is.":INPUT"Try again"d$:G0T0 3090

1141H1
1780 PRINT@264,"";:WN=65:G0SUB5100
1800 PRINT:WN = 33:G0SUB5100
1810 F0R DU =1 T0 1000:IF INKEY$=""

THEN 1810
1820 G0T0 1840
1830 RETURN
1840 REM — Proc b
1850 CLS
1860 PRINT@266,"Y0U'RE DEAD!"
1870 PRINT@298," 	

1880 G0T0 6500
1890 CLS
1900 IF K(3) < > —I THEN PRINT:WN =66:

G0SUB5100:PRINT:WN =67: G0SUB

5100:EXEC41194:RETURN
1910 IF K(2) < > —I THEN PRINT:WN =68:

G0SUB5100:PRINT:WN =67: G0SUB
5100:EXEC41194:L=L-6:RETURN

1920 PRINT@267,"WELL D0NE!"
1940 PRINT@299,"Y0U'VE W0N"
1960 G0T0 6500
1970 REM — Proc c
1980 Q7= 0:F0R C7=1 T0 21
1990 IF INSTR(0$(C7),1 -$)> 0 THEN

Q7= C7
2000 NEXT
2010 IF 07 = 0 THEN PRINT"I D0N'T

UN D ERSTAND111";T$:G0T02070
2020 IF K(Q7)= —I THEN PRINT"Y0U'VE

ALREADY G0T IT!":G0T02070
2030 IF K(Q7) < >L THEN PRINT"THE El ";

T$;" ❑ ISN'T HERE!":G0T02070
2040 IF P7>3 THEN PRINT"Y0U CAN'T

CARRY ANY M0RE":G0T02070
2050 K(Q7) = —1:P7 +1:PRINT"0K —

Y0U'VE G0T IT"
2060 WN=166:G0SUB5200:IF T$=Z$

THEN X7 = X7+600
2070 G0SUB5500
;080 RETURN
2090 REM — Proc d
2100 WN=153:G0SUB5200:D1$=Z$:

WN=155:G0SUB5200:IF E$(L) = D1$
0R E$(L) = Z$ THEN WN = 69:G0SUB
5000:PRINTZ$,E$(L);"!":WN = 34:G0SUB
5100:G0SUB5500:G0T06500

2110 IF E$(L)= — THEN WN=35:G0SUB
5100:G0SUB5500:G0SUB5500:G0T0 2440

2120 WN=129:G0SUB5200:IF E$(L) =Z$
THEN WN = 36:G0SUB5100:G0SUB5500:
G0SUB5500:G0T02440

2130 C$=`"':H$=""
2140 W7 =1:A7 = 0
2150 IF K(20) = —1 THEN W7 =W7 + 2
2160 IF K(9) = —1 THEN W7 =W7 + 3
2170 IF K(15) = —1 THEN A7 =A7 + .5
2180 IF K(14) = —1 THEN A7 =A7 + .5
2190 IF K(10) = —1 THEN W7 =W7 +1
2200 IFA7 =1 THEN W7 =W7 + 3
2210 IF W7=1 AND C$="" THEN INPUT

"FIGHT WITH BARE HANDS (Y/N)";H$
2220 WN=70:G0SUB5200:IF E$(L)=Z$

AND H$="Y" THEN WN=37:G0SUB
5100:G0SUB5500:G0T01840

2230 WN =135: G0SUB5200:IF H$="Y"
AND F(L) >1 AND E$(L) < >Z$ THEN
PRINT"Y0U CAN'T FIGHT THE ❑ "; E$(L):
PRINT"WITH BARE HANDS!":
G0SUB5500:G0T02440

2240 IF H$ < >"Y" AND W7=1 THEN 2440
2250 E7=RND(6):CLS
2260 CLS8
2290 PRINT@268,"fighting";
2300 SCREEN0,1:PRINT@480,"";
2310 G0SUB5500

2320 IF W7> F(L) AND E7>2 THEN 	2810 IF MO =`"' THEN WN=75:G0SUB
V = V — 2:GOT02360 	 5100:G0SUB5500:G0T02980

2330 IF W7> F(L) AND E7< =2 THEN 	2820 WN=153:G0SUB5200:D1$=Z$:
V = V-1:GOT02380 	 WN=155:GOSUB5200:IF E$(L)=D1$

2340 IF W7 < = F(L) AND E7> =4 THEN 	0R E$(L) =Z$ THEN PRINT"N0 DEAL!":
V = V — 3:GOT02360 	 WN = 34:G0SUB5100:G0SUB5500:G0T0

2350 IF W7 < = F(L) AND E7 <4 THEN 	6500
V = V— 3:G0T02380 	 2830 PRINT©416,"WHAT'S Y0UR 0FFER";:

2360 IF V<1 THEN 1840 	 INPUTOMVA =0
2370 PRINT:PRINT"Y0U ARE WOUNDED!" 	2840 WN=166:GOSUB5200:IF K(21) = —1

:PRINT"Y0UR VITALITY IS";V:G0T02410 	AND OF$=Z$ THEN 2890
2380 IF V<1 THEN 1840 	 2850 WN=166:G0SUB5200:IF 0F$=Z$
2390 PRINT:PRINT"YOU HAVE W0N THE 	THEN WN=76:GOSUB5100:G0SUB5500:

BATTLE!":PRINT"Y0UR VITALITY IS";V 	RETURN
2400 E$(14="":G0SUB5500:RETURN 	2860 WN =126:GOSUB5200:D1$ = Z$:
2410 L7 =RND(21):IF K(L7)= —1 THEN 	WN =77:GOSUB5200:D2$=Z$:WN =70:

PRINT"Y0U HAVE DR0PPED THE ❑ "; 	GOSUB5200:IF 0F$=D1$ OR 0F$=
0$(L7):K(L7)= L:P7= P7 —1 	 D2$ AND K(1)= —1 AND E$(L)=Z$

2420 INPUT "C0NTINUE THE FIGHT (Y/N)";C$ 	THEN PRINT"IT'S A DEAL":GOSUB5500:
2430 IF C$="Y" THEN 2140 	 = "":K(1) = 0:RETURN
2440 CLS:RETURN 	 2870 IF 0F$=D1$ AND E$(L)=Z$ THEN
2450 REM — Proc e 	 WN=78:G0SUB5100:G0SUB5500:G0T0
2460 CLS 	 530
2470 PRINT"YOU HAVE COLLECTED: —":P7 = 0 2880 WN=166:G0SUB5200:IF 0F$ > Z$
2480 F0R C7=1 T0 21 	 THEN WN=79:GOSUB5000:PRINTZ$;
2490 IF K(C7)= —1 THEN PRINT"THE ❑ "; 	0F$;"?":G0SUB5500:G0T02980

0$(C7):P7= P7+1 	 2890 PRINT"Y0U HAVE";X7;" G0LD":
2500 NEXT 	 WN=80:G0SUB5000:PRINTZ$;:INPUT OF
2510 IF P7=0 THEN PRINT"N0THING" 	2900 IF OF >X7 THENWN=81:G0SUB5100:
2520 PRINT"YOUR VITALITY IS";V 	 G0T02890
2530 G0SUB5500:G0SUB5500
2540 RETURN
2550 REM — Proc f
2560 CLS
2570 WN = 71:G0SUB5100
2580 G0SUB5500
2590 J=RND(6)
2600 IF T7<1 AND 17<1 THEN WN =72:

GOSUB5100:G0T02720
2610 IFT7=1AND17 =1ANDJ >3THEN2680
2620 IFT7<1AND17=1THEN2680
2630 WN = 38:G0SUB5100
2640 G0SUB5500:G0SUB5500:T7$=""
2650 FOR C7=0 T0 5:Q7= RND(26) + 64:

T7$ = CHR$(Q7) +T7$:NEXT
2660 WN=73:GOSUB5100:PRINTT7$:T7= 0
2670 G0SUB5500:G0T02730
2680 WN=39:G0SUB5100
2690 G0SUB5500:G0SUB5500:17$=""
2700 F0R C7=0 T0 5:Q7 =RND(26)+ 64:

17$= CHR$(Q7) + 17$:NEXT
2710 WN=73:G0SUB5100:PRINTI7$:17= 0
2720 GOSUB5500
2730 CLS:RETURN
2740 REM — Proc g
2760 CLS:WN =74:G0SUB5100
2770 E$(L) =JM$:F(L) =10
2780 N = 0:S= 0:E= 0:W=0:U= 0:D=0:

F=1
2790 RETURN
2800 REM — Proc h

2910 CLS:WN = 82:G0SUB5100:G0SUB5500
2920 PR =RND(12) * 50
2930 IF PR >0F THEN CLS:WN=83:G0SUB

5000:PRINTZ$:WN =84:GOSUB5000:
PRINTZ$;:INPUTIN$

2940 IF 0F> =PR THEN2990
2950 IF IN$ ="Y" THEN2890
2960 WN =129:IF IN$ < >"Y" AND E$(L)

< >Z$ THEN WN=85:GOSUB5100:
GOSUB5500:G0SUB2090:RETURN

2970 IF IN$ >"Y" THEN WN=86:G0SUB
5100:G0SUB5500:PRINT"Y0U
SURRENDER":G0SUB5500:G0T0 6500

2980 CLS:RETURN
2990 PRINT"0K — IT'S A

DEAL":E$(L) ="":X7 = X7 — 0F
3000 IF X7=0 THENK(21) =21
3010 IF0F< > 0 THEN PRINT "YOU'VE

L0ST";0F," ❑ G0LD"
3020 GOSUB5500
3030 RETURN
3040 REM***Proc i
3050 CLS
3060 WN=87:G0SUB5100
3070 IF1$=17$ THEN 3250
3080 IF 1$ = T7$ AND T7=0 THEN

PRINT:INPUT "WHERE D0 Y0U WANT TO
G0";D7$:T7= —1

3090 WN=88:G0SUB5300:IF D7$= D1$
0R D7$=Z$ THEN L=19:RETURN

3100 WN=90:G0SUB5300:IF D7$=D1$
0R D7$=Z$ THEN L=1:RETURN

3110 WN=92:G0SUB5200:IF D7$=Z$
THEN L=8:RETURN

3120 WN=93:G0SUB5300:IF D7$= D1$
0R D7$=Z$ THEN L=2:RETURN

3130 WN=95:G0SUB5200:IF D7$=Z$
THEN L=9:RETURN

3140 WN=96:G0SUB5300:IF D7$=D1$
0R D7$=Z$ THEN L=10:RETURN

3150 WN=98:G0SUB5200:IF D7$=Z$
THEN L=15:RETURN

3160 WN=99:G0SUB5200:IF D7$=Z$
THEN L=21:RETURN

3170 WN=100:G0SUB5200:IFD7$=Z$
THENL=11:RETURN

3180 WN=101:G0SUB5300:IF D7$=D1$
0R D7$=Z$ THEN L=20:RETURN

3190 WN=103:G0SUB5300:IF D7$= D1$
0R D7$=Z$ THEN L=17:RETURN

3200 WN=107:G0SUB5300:IF D7$ = Dl$
OR D7$=Z$ THEN L=3:RETURN

3210 WN=107:G0SUB5200:1FD7$=Z$
THENL=12:RETURN

3220 WN=108:G0SUB5300:IF D7$=D1$
0R D7$=Z$ THEN L=13:RETURN

3230 WN=110:G0SUB5200:IF D7$=Z$
THEN L=5:RETURN

3240 PRINT"I D0N'T KN0W WHERE THE
";D7$:1NPUT "IS, TRY
AGAIN";D7$:G0T03090

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Algorithms

in games
	

1372-1373
use of in Pascal

1354,1389-1390
Animation

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 	1245-1253
music composer program

1333-1337,1392-1396,
1416-1423

PERT program
1429-1433,1466-1473

room planner program
1269-1275,1308-1313

test card program 	1474-1475
Artificial intelligence 	1264,1294

in Cavendish Field game 1372-1377
using LISP 	 1410-1411

B
Basic programming

file handling 	1358-1364
fractals 	1397-1401,1434-1439
moving colour sprites

Commodore 64 	1258-1263
operating system 	1322-1327
perspective drawing 	1461-1465
recursion 	 1289-1295
screen dump programs 1365-1371

C
Cavendish Field game

part 1—design rules and
UDGs 	 1254-1257

part 2—map and troop arrays
1282-1288

part 3—issuing orders
1301-1307

part 4—combat and morale
routines 	 1346-1351

part 5—strengthening the
computer 	1372-1377

Cliffhanger
part 12—adding weather

1240-1244
part 13—rolling boulders 1

1276-1281
part 14—rolling boulders 2

1328-1332
part 15—walking Willie

1338-1345
part 16—jumping Willie 1

1378-1385
part 17—jumping Willie 2

1402-1409
part 18—death, sound and

end routines 	1440-1447
part 19—Willie scores and

speeding up 	1476-1481

Colour
code guessing game 	1356-1357
of sprites

Commodore 64 	 1262
representing in tonal screen

dump 	 1369-1371
shading effects 	1464-1465

D
Data, separate storage of 1358-1364
Desperate decorator game

1314-1316
Dictionary, in FORTH 	1482
Dot command, in FORTH 	1485

E
Editing

with LOGO 	 1296
with Pascal 	 1355,1391

Escape adventure game
part 1 	 1424-1428
part 2 	 1450-1455
part 3 	 1486-1492

F
Factorials, calculating

BASIC program for 	1291-1293
in LISP 	 1458-1459

Files, handling 	1358-1364
FORTH

Part 1—terminology and stack
manipulation 	1482-1485

Fractals 	1397-1401,1434-1439

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307,
1346-1351,1372-1377

cliffhanger
1240-1244,1276-1281,
1328-1332,1338-1345,
1378-1385,1402-1409,
1440-1447,1476-1481

desperate decorator 	1314-1316
escape 	1424-1428,1450-1455

1486-1492
horoscope program
	

1245-1253
life
	 1237-1239

`match that'
	

1356-1357
Graphics

displays, programs for dumping
1365-1371

moving and storing sprites
Commodore 64 	1258-1263

perspective drawing 	1461-1464
shading 	 1464-1465
using fractals

1398-1401,1434-1439
using LOGO

1296-1300,1317-1320

H
Heuristics, use of in Cavendish Field

1373-1377
Horoscope program 	1245-1253

L
Languages

FORTH
	

1482-1485
LISP
	

1410-1415,1456-1460
LOGO
	

1264-1268,1296-1300,
1317-1321

Pascal 	1352-1355,1386-1391
Life game 	 1237-1239
LIFO principle 	 1484
LISP 	1410-1415,1456-1460
LOGO 	 1264-1268,

1296-1300,1317-1321

M
Machine code

games programming
see cliffhanger; life game

program to play background
music
Acorn, Commodore 64 1448-1449

tonal screen dump 	1369-1371
`Match that' colour code

guessing game 	1356-1357
Mathematical functions

in fractal geometry
1397-1401,1434-1439

with FORTH 	 1485
with LISP 	 1415
with LOGO 	 1320

Memory
advantages of Pascal in 	1353
banks, range of

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

Commodore 64 	 1262
managing by OS 	1323-1327
storing LISP in 	1459-1460
storing sprites in

Commodore 64 	1258-1260
Music

background, program to play
Acorn, Commodore 64

1448-1449
composer program 	1333-1337,

1392-1396,1416-1423

0
Operating system 	1322-1327

P
Pascal 	1352-1355,1386-1391
Perspective drawing 	1461-1465
PERT program

part 1—the database 	1429-1433

part 2—using the program
1466-1473

Pointers, sprite
Commodore 64
	

1260-1261
Procedures,

in LOGO
	

1268,1296-1300
Punctuation,

when handling files 	1360-1363
with FORTH
	

1484-1485
with LISP
	

1412
with LOGO
	

1320-1321
with Pascal
	

1354-1355,1391

Q
Quicksort program, recursive

1293-1294

R
Recursion

in BASIC
	

1289-1295
in fractal programs
	

1398-1401,
1434-1439

in LISP
	

1458-1459
in LOGO
	

1299-1300
Reverse Polish notation (RPN)

1485
Room planner program

1269-1275,1308-1313

S
Screen dumping, of graphics

1365-1371
Screens, in FORTH
	

1482
Shading, with colour
	1464-1465

Sprites, Commodore 64
moving and storing 	1258-1263

Sprites, LOGO 	1317-1320
Stack, manipulation of

in FORTH 	 1484-1485

T
Test card program 	1474-1475
Towers of Hanoi program

1294-1295
Turtle 	1266-1268,1296-1300

U
User-defined functions,

in FORTH
	

1484
in LISP
	

1456-1459

V
VIC-II chip

Commodore 64 	 1258
Vocabularies, in FORTH 	1484

Wargames
see Cavendish Field

The publishers accept no responsibility for unsolicited material sent for publication in INPUT* All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Try to outbluff your computer. No
matter how hard you try, when playing
SCISSORS, PAPER, STONE, it'll see
right through you by making fast
statistical calculations

Make life easier for yourself when
developing and debugging programs.
Our PROGRAM CROSS-REFERENCER
is a handy utility which will list selected
lines and search for and replace variable
names

d' Go FORTH and write stacks of
programs after you've found out how to
structure this fast and efficient general
purpose language

Try out some serpent training, or
spend a night on the reptiles in
Cliffhanger* Add routines to SHAKE
THOSE SNAKES and poke their tongues

U . * . and continue with ESCAPE

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

